Using Abstract Harmonic Analysis and the Lie Group Theory for the Study of Parameterized Quantum Circuits

dc.contributor.advisorTheis, Dirk Oliver Jim, juhendaja
dc.contributor.authorDolzhkov, Evgenii
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2023-11-08T13:27:44Z
dc.date.available2023-11-08T13:27:44Z
dc.date.issued2020
dc.description.abstractQuantum computers are believed to be able to significantly outperform classical ones in terms of running time required to solve various problems. Near-term quantum computers, that can already be available in the nearest future, will have fairly limited resources, thus implying additional limitations and challenges. Near-term quantum algorithms are primarily based on parameterized quantum circuits. A parameterized quantum circuit is a quantum circuit, which is run repeatedly, while changing the numerical parameters some of the quantum operations in response to previous measurement results. Parameterized quantum circuits, however, need to be optimized, which can be simplified by endowing them with some mathematical structure, e.g., the ability to take derivatives or compute Fourier transforms. Here we study the possibility of using non-commutative Fourier transforms as a tool to find useful mathematical structure in parameterized quantum circuits.To our knowledge this thesis is the first work, where non-commutative Fourier transforms have been applied to parameterized quantum circuits. Our results include computations and theorems about non-commutative Fourier spectrum on parameterized quantum circuits. The results of this thesis provide a foundation, that opens the door for further study into derivatives and gradients of expectation functions on parameterized quantum circuits via the means of abstract harmonic analysis.et
dc.identifier.urihttps://hdl.handle.net/10062/94117
dc.language.isoenget
dc.publisherTartu Ülikoolet
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectQuantum Computinget
dc.subjectNear-Term Quantum Computinget
dc.subjectParameterized Quantum Circuitset
dc.subjectFourier Analysiset
dc.subjectNon-Commutative Fourier Transformset
dc.subject.othermagistritöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticset
dc.subject.otherinfotechnologyet
dc.titleUsing Abstract Harmonic Analysis and the Lie Group Theory for the Study of Parameterized Quantum Circuitset
dc.typeThesiset

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
Dolzhkov_computerscience_2020.pdf
Suurus:
355.64 KB
Formaat:
Adobe Portable Document Format
Kirjeldus:

Litsentsi pakett

Nüüd näidatakse 1 - 1 1
Pisipilt ei ole saadaval
Nimi:
license.txt
Suurus:
1.71 KB
Formaat:
Item-specific license agreed upon to submission
Kirjeldus: