Parameter estimation in progressive multistate models

dc.contributor.advisorLember, Jüri, juhendaja
dc.contributor.authorXu, Zhen
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Matemaatika ja statistika instituutet
dc.date.accessioned2025-06-25T12:24:50Z
dc.date.available2025-06-25T12:24:50Z
dc.date.issued2025
dc.description.abstractMultistate models are widely used to analyze systems or entities that transition between different states over time. These models have applications in various fields, including survival analysis, reliability engineering, and financial mathematics. This thesis will focus on parameter estimation for time-homogeneous progressive Markov chains, where transitions are limited to higher-numbered states, and the final state is absorbing. The thesis can be divided into two parts, the first part focusing on normal multistate models and the other part focusing on hidden multistate models. In the first part, we study progressive, time-homogeneous multistate Markov chains. During this part, maximum likelihood estimators (MLEs) for transition probabilities are derived for uncensored, fixed-censored, and random-censored scenarios. Consistency proofs for these estimators are provided using theoretical tools such as the Strong Law of Large Numbers and the Continuous Mapping Theorem. The second part focuses on hidden multistate models, specifically the twostate hidden Markov chains. In this case, the underlying states are not fully observable: In each observation, each position of the chain has a constant probability of being observed. We study the block structure of the observations and derive statistical properties of block lengths under different censoring mechanisms. Here we only have one transition probability to estimate, moment-based estimators and maximum likelihood estimators are developed for the transition probability, and their consistency is validated through simulations. Simulation experiments are also conducted for both parts to evaluate the performance of the derived estimators under various parameter configurations and censoring mechanisms. The results confirm the consistency of all proposed estimators.en
dc.identifier.urihttps://hdl.handle.net/10062/111673
dc.language.isoen
dc.publisherTartu Ülikoolet
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Estoniaen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/ee/
dc.subjectprogressive Markov chainsen
dc.subjecthidden Markov chainsen
dc.subjectparameter estimationen
dc.subjectmaximum likelihood estimationen
dc.subjectmethod of moments estimatorsen
dc.subjectconsistencyen
dc.subjectsimulation studiesen
dc.subjectühesuunalised Markovi mudelidet
dc.subjectvarjatud Markovi mudelidet
dc.subjectparameetrite hindamineet
dc.subjectmomentide meetodet
dc.subjectsuurima tõepära hinnanget
dc.subjectmõjususet
dc.subjectsimulatsioonidet
dc.subject.othermagistritöödet
dc.subject.othervõrguväljaandedet
dc.titleParameter estimation in progressive multistate modelsen
dc.typeThesis

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
zhen_xu_msc_2025.pdf
Suurus:
3.75 MB
Formaat:
Adobe Portable Document Format