Evaluation Metrics for Predictive Monitoring Systems with Highly Imbalanced Datasets

dc.contributor.advisorDumas, Marlon, juhendaja
dc.contributor.advisorTertychnyi, Pavlo, juhendaja
dc.contributor.authorGodgildieva, Mariia
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2023-11-02T13:59:11Z
dc.date.available2023-11-02T13:59:11Z
dc.date.issued2020
dc.description.abstractA predictive monitoring system is a machine learning model used periodically with the goal of monitoring the behaviour of database entities. Most monitoring systems are trained and tested on highly imbalanced data as the target events are quite rare. Moreover, the evaluation of predictive monitoring is even more complicated by aspects specific to the task (e.g. proper timing of alerts and possible reoccurrence of alerts). Thus, there is a need in stable, class imbalance tolerant metrics that also reflect all monitoring-specific issues. We have investigated existing approaches of monitoring systems evaluation and found them to be quite case-specific. Therefore, we have extended and modified the methods in use to be domain-independent and easily adjustable to the task at hand. The proposed evaluation approach is implemented and evaluated with experiments on data from different domains. In addition, we analysed several metrics designed specifically for imbalanced data to conclude if they can be used for monitoring evaluation due to restrictions of the approach.et
dc.identifier.urihttps://hdl.handle.net/10062/93992
dc.language.isoenget
dc.publisherTartu Ülikoolet
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectPredictive monitoringet
dc.subjectmachine learninget
dc.subjectevaluation metricset
dc.subjectclass imbalanceet
dc.subject.othermagistritöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticset
dc.subject.otherinfotechnologyet
dc.titleEvaluation Metrics for Predictive Monitoring Systems with Highly Imbalanced Datasetset
dc.typeThesiset

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
godgildieva_computerscience_2020.pdf.pdf
Suurus:
55.63 KB
Formaat:
Adobe Portable Document Format
Kirjeldus:

Litsentsi pakett

Nüüd näidatakse 1 - 1 1
Pisipilt ei ole saadaval
Nimi:
license.txt
Suurus:
1.71 KB
Formaat:
Item-specific license agreed upon to submission
Kirjeldus: