A Modelling and Simulation Tool for DNA Strand Displacement Systems

dc.contributor.advisorOrponen, Pekka, juhendaja
dc.contributor.advisorSkachek, Vitaly, juhendaja
dc.contributor.advisorGautam, Vinay, juhendaja
dc.contributor.authorLong, Shiting
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2023-11-06T14:19:39Z
dc.date.available2023-11-06T14:19:39Z
dc.date.issued2020
dc.description.abstractDNA is the hereditary material in almost all organisms, and the sequence of its monomers efficiently conveys essential biological information. Although DNA is well known for its biological functions, the unique material properties of DNA also motivate scientists to design and manufacture DNA complexes for technological purposes. This research field is termed DNA nanotechnology, and it aims to construct arbitrary biomolecular structures using DNA molecules as building blocks. DNA nanotechnology initially focused on programmable static structures, but it has further inspired the designs of engineering systems with dynamic properties such as logic circuits and catalytic systems. This dynamic variant of DNA nanotechnology is enabled by the DNA strand displacement (DSD) mechanism. The design of a DSD system involves discreetly designed initial species that can execute expected sequential reactions. However, such task is hard to be accomplished by hand as the complete reaction network of a large-scaled DSD system can be intractable. In this thesis, we study the problem of modelling DSD systems, i.e., enumerating combinatorially the full space of molecular complexes reachable from the initial species and transferring the resulting chemical reaction network to a simulation engine. We present a rule-based modelling pipeline RuleDSD for generating and simulating reaction networks of DSD systems. RuleDSD is implemented as a software package DSDPy, a tool that automatically generates a complete reaction network for a described DSD system and integrates with the PySB framework for further simulations using the BioNetGen engine. The reaction networks produced by DSDPy show that it is suitable for modelling various DSD systems from existing literature.et
dc.identifier.urihttps://hdl.handle.net/10062/94067
dc.language.isoenget
dc.publisherTartu Ülikoolet
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectDNA Nanotechnologyet
dc.subjectDNA Strand Displacementet
dc.subjectRule-based Modellinget
dc.subjectDSD Modelling and Simulationet
dc.subjectPySB, BioNetGenet
dc.subject.othermagistritöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticset
dc.subject.otherinfotechnologyet
dc.titleA Modelling and Simulation Tool for DNA Strand Displacement Systemset
dc.typeThesiset

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Long_ComputerScience_2020.pdf
Size:
1.6 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: