Structure-property relationships of moldable silicone foams
Date
2024-11-06
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Elastomeersed silikoonvahud leiavad üha enam kasutust pehmendusmaterjalidena. Nende elastsed ja veekindlad omadused koos loomuomase tulekindluse ja bioühilduvusega annavad neile märkimisväärse eelise praegusel ajal enimkasutatavate sünteetiliste vahtude ees. Kuna pehmendusmaterjalid on pideva dünaamilise koormuse all, on mehaanilise vastupidavuse parandamiseks tavapärane lisada täiteaineid ja lisandeid. Selliste mitmekomponentsete komposiitsegude paisutamine pakub omajagu väljakutseid homogeense vahustruktuuri saavutamisel madalate tiheduste juures, mis on omakorda oluline omadus, eriti transporditööstuses. Käesolev väitekiri uurib konkreetset silikoonvahtude sünteesimeetodit, mis hõlmab kahe samaaegse katalüütilise protsessi – ristseostumise ja gaasieraldumise – ajastamist polümeersetes segudes. Mõlemad reaktsioonid kasutavad hüdriidfunktsionaliseeritud polüsiloksaani, mis muutub polümeermaatriksi lahutamatuks osaks ja oluliselt panustab vahu tekkesse gaasi eraldumise kaudu. Käesolevas väitekirjas kajastatud teadusartiklites analüüsiti gaasieraldumise kineetikat monoalkoholide vahendusel ning vahtude sünteesi, kasutades keemiliste kergitajatena vee-alkoholi segusid erinevates koostistes. Väitekiri väidab, et vee-alkoholi segude kasutamine võib vähendada vahtude tihedust, kahjustamata nende mehaanilisi omadusi. Lisaks uuriti erinevate funktsionaalsete lisanditega silikoonvahtude koostoimet bakteritega, kasutades mudelorganismina Escherichia coli-t. Tulemused näitasid, et antibakteriaalset aktiivsust takistab elastomeerikiht, mis katab antibakteriaalseid osakesi. Käesolevas uuringus tuvastatud antibakteriaalne toime tuleneb antibakteriaalsete ainete lekkimisest polümeermaatriksist. Doktoritöösse kaasatud uuringute tulemused parandavad meie arusaamist sellest, kuidas häälestada silikoonpolümeerseid vahtstruktuure ja nende koostoimeid mikroorganismidega, mis võivad parandada nii nende vahtude mehaanilisi omadusi kui ka jätkusuutlikkust.
Elastomeric silicone foams are increasingly being used in cushioning applications. Their elastic and water-repellent properties, along with inherent fire retardancy and biocompatibility, give them a significant advantage over currently used synthetic foams. The incorporation of fillers and additives is a standard practice for enhancing mechanical resilience in applications involving constant dynamic compression. However, the multi-component nature of these composite blends poses challenges in achieving structurally homogeneous cellular foams, particularly in the low-density range, which is an essential characteristic, especially for the transportation industry. This thesis explores a specific foam synthesis technique involving two simultaneous catalytic processes in precursor blends: crosslinking and blowing. These reactions utilize hydride-functional polysiloxane, which becomes an integral part of the polymeric matrix and contributes to the blowing process through gas evolution. The studies conducted in this thesis analyzed gas evolution kinetics with monoalcohols and foam synthesis using water-alcohol blends as chemical blowing agents with varying compositions. This thesis proposes that the application of water-alcohol blends can improve the density of foams without compromising their mechanical properties. Furthermore, silicone foams with antibacterial additives were used to study their interaction with bacteria, specifically Escherichia coli. The results indicate that the antibacterial activity is hindered by the elastomer layer covering the antibacterial particulate additives. The antibacterial effect detected in this study originates from the leakage of antibacterial agents from the polymer matrix. The findings of these studies advance our understanding of how to tune foam structures and their interactions with microorganisms, which can enhance both the mechanical properties and sustainability of these foams.
Elastomeric silicone foams are increasingly being used in cushioning applications. Their elastic and water-repellent properties, along with inherent fire retardancy and biocompatibility, give them a significant advantage over currently used synthetic foams. The incorporation of fillers and additives is a standard practice for enhancing mechanical resilience in applications involving constant dynamic compression. However, the multi-component nature of these composite blends poses challenges in achieving structurally homogeneous cellular foams, particularly in the low-density range, which is an essential characteristic, especially for the transportation industry. This thesis explores a specific foam synthesis technique involving two simultaneous catalytic processes in precursor blends: crosslinking and blowing. These reactions utilize hydride-functional polysiloxane, which becomes an integral part of the polymeric matrix and contributes to the blowing process through gas evolution. The studies conducted in this thesis analyzed gas evolution kinetics with monoalcohols and foam synthesis using water-alcohol blends as chemical blowing agents with varying compositions. This thesis proposes that the application of water-alcohol blends can improve the density of foams without compromising their mechanical properties. Furthermore, silicone foams with antibacterial additives were used to study their interaction with bacteria, specifically Escherichia coli. The results indicate that the antibacterial activity is hindered by the elastomer layer covering the antibacterial particulate additives. The antibacterial effect detected in this study originates from the leakage of antibacterial agents from the polymer matrix. The findings of these studies advance our understanding of how to tune foam structures and their interactions with microorganisms, which can enhance both the mechanical properties and sustainability of these foams.
Description
Väitekirja elektrooniline versioon ei sisalda publikatsioone