Waste Identification from Event Logs

dc.contributor.advisorMilani, Fredrik, juhendaja
dc.contributor.authorSharma, Shefali Ajit
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2023-09-21T12:17:38Z
dc.date.available2023-09-21T12:17:38Z
dc.date.issued2021
dc.description.abstractOrganizations execute a variety of business processes to meet their business objectives. Therefore, they seek to constantly improve such processes. One way to improve the efficiency of processes is to identify and eliminate wastes in a process. Analysts use different process mining software to discover and analyze business processes. Event logs, i.e., data captured from the execution of business processes, are used to discover and analyze processes to identify wastes. To identify wastes from event logs, analysts need to know exactly what to look for. However, wastes are manifested in business processes in different ways. Therefore, manifestations of wastes that the analyst is unfamiliar with, remain hidden. This thesis aims at identifying the manifestations of wastes in business processes and how to detect them from event logs. To this end, 187 relevant papers were identified and subjected to content analysis. From these, manifestations of 8 wastes in business processes were elicited. Following this, a framework for how to detect such wastes from business process event logs was derived. Thus, the contribution of the thesis is a framework for identifying wastes from event logs.et
dc.identifier.urihttps://hdl.handle.net/10062/92339
dc.language.isoenget
dc.publisherTartu Ülikoolet
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectWasteet
dc.subjectProcess mininget
dc.subjectEvent logset
dc.subjectWaste identificationet
dc.subjectWaste detectionet
dc.subjectBusiness processet
dc.subject.othermagistritöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticset
dc.subject.otherinfotechnologyet
dc.titleWaste Identification from Event Logset
dc.typeThesiset

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
sharma_softwareengineering_2021.pdf
Suurus:
951.7 KB
Formaat:
Adobe Portable Document Format
Kirjeldus:

Litsentsi pakett

Nüüd näidatakse 1 - 1 1
Pisipilt ei ole saadaval
Nimi:
license.txt
Suurus:
1.71 KB
Formaat:
Item-specific license agreed upon to submission
Kirjeldus: