Toward Automatic Construction of Machine Learning Pipelines

dc.contributor.advisorElshawi, Radwa, juhendaja
dc.contributor.advisorEldeeb, Hassan, juhendaja
dc.contributor.authorAmashukeli, Shota
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2023-09-22T06:40:18Z
dc.date.available2023-09-22T06:40:18Z
dc.date.issued2021
dc.description.abstractThe rapid increase in popularity and demand for machine learning solutions has resulted in rising of the automated machine learning (AutoML) field. AutoML aims to automate the process of building machine learning pipelines by optimizing each component. Most of the current automated machine learning frameworks focus on automating the algorithm selection and hyper-parameter optimization problem with a limited focus on automating the feature engineering which is a key value-adding step that aims to construct informative features automatically and reduce manual labor for building well-performing machine learning pipelines. In addition, most of the current automated machine learning frameworks generate pipelines without human intervention. In practice, completely excluding the human from the loop creates several limitations. For example, most of these approaches ignore the user-preferences on defining or controlling the search space which consequently can impact the acceptance of the returned models by the end-users. The contribution of this thesis is twofold: 1) We design and implement iSmartML, an interactive visualization tool that supports users in controlling the search space of AutoML and analyzing and explaining the results. 2) We design and implement BigFeat, a scalable automated feature engineering tool.et
dc.identifier.urihttps://hdl.handle.net/10062/92350
dc.language.isoenget
dc.publisherTartu Ülikoolet
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectMachine learninget
dc.subjectAutoMLet
dc.subjectfeature engineeringet
dc.subject.othermagistritöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticset
dc.subject.otherinfotechnologyet
dc.titleToward Automatic Construction of Machine Learning Pipelineset
dc.typeThesiset

Failid

Originaal pakett

Nüüd näidatakse 1 - 2 2
Laen...
Pisipilt
Nimi:
Amashukeli_computer_sciense_2021.pdf
Suurus:
877.55 KB
Formaat:
Adobe Portable Document Format
Kirjeldus:
Laen...
Pisipilt
Nimi:
Toward_Automatic_Construction_of_Machine_Learning_Pipelines.zip
Suurus:
285.62 KB
Formaat:
Compressed ZIP
Kirjeldus:
Lisad

Litsentsi pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
license.txt
Suurus:
1.71 KB
Formaat:
Item-specific license agreed upon to submission
Kirjeldus: