Tihedamad postkvant turvalised krüpteerimisprotokollid poolklassikaliste oraaklite abil



Journal Title

Journal ISSN

Volume Title



Krüpteerimisprotokollide analüüsimiseks kasutatakse tihti juhusliku oraakli mudelit (JOM), aga postkvant turvaliste protokollide analüüs tuleb läbi viiakvant juhusliku oraakli mudelis (KJOM). Kuna paljudel tõestamise tehnikatel ei ole kvant juhusliku oraakli mudelis analoogi, on KJOMis raske töötada. Seda probleemi aitab lahendada One-Way to Hiding (O2H) Teoreem, mille Unruh tõestas 2015. aastal.Ambainis, Hamburg ja Unruh esitasid teoreemi täiustatud versiooni 2018. aastal. See kasutab poolklassikalisi oraakleid, millel on suurem paindlikkus ja tihedamad piirid. Täiustatud versioon võimaldab tugevdada kõigi protokollide turvalisust, mis kasutasid vana versiooni. Me võtame ühe artikli, kus kasutati vana O2H Teoreemi versiooni, ja tõestame protokollide turvalisuse uuesti kasutades poolklassikalisi oraakleid.
The random oracle model (ROM) has been widely used for analyzing cryptographic schemes. In the real world, a quantum adversary equipped with a quantum computer can execute hash functions on an arbitrary superposition of inputs. Therefore, one needs to analyze the post-quantum security in the quantum random oracle model (QROM). Unfortunately, working in the QROM is quite difficult because many proof techniques in the ROM have no analogue in the QROM. A technique that can help solve this problem is the One-Way to Hiding (O2H) Theorem, which was first proven in 2015 by Unruh. In 2018, Ambainis, Hamburg and Unruh presented an improved version of the O2H Theorem which uses so called semi-classical oracles and has higher flexibilityand tighter bounds. This improvement of the O2H Theorem should allow us to derive better security bounds for most schemes that used the old version. We take one paper that used the old version of the O2H Theorem to prove the security of different schemes in the QROM and give new proofs using semi-classical oracles.