CDR-Based Trajectory Reconstruction Using Transformers

dc.contributor.advisorHadachi, Amnir, juhendaja
dc.contributor.authorBollverk, Oliver
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2023-09-01T07:34:15Z
dc.date.available2023-09-01T07:34:15Z
dc.date.issued2022
dc.description.abstractWith the development of telecommunication technologies, mobile devices, and data collected via mobile services, it has become of great interest to predict the paths that individuals take in cities. With sparse mobility data, the goal of researchers is to build models that are able to fill the gaps, or in other words, to reconstruct the trajectory of an individual. Recent models proposed for this task utilize Call Detail Records (CDRs) produced when a mobile phone connects to the cellular network, using Monte Carlo or Hidden Markov Model (HMM) based approaches. In this thesis, a novel deep learning method for trajectory reconstruction from CDR data is introduced. GPS points are linked to roads on a road network constructed from the OpenStreetMap (OSM) database, and the resulting labels are used in training as ground truth. Drawing inspiration from prior work in matching GPS points to a network of roads using Transformer neural networks, we present a framework that involves using two Transformers sequentially with partially modified architectures. The final result is a trained Transformer, able to predict the road level path, knowing only the cell, in the area in which movement started. The accuracy of estimating the taken path was compared with that of prior approaches which use probabilistic modeling to predict the next location from CDR data.et
dc.identifier.urihttps://hdl.handle.net/10062/91940
dc.language.isoenget
dc.publisherTartu Ülikoolet
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectdeep learninget
dc.subjecttrajectory reconstructionet
dc.subjectmobile dataet
dc.subjectTransformeret
dc.subject.othermagistritöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticset
dc.subject.otherinfotechnologyet
dc.titleCDR-Based Trajectory Reconstruction Using Transformerset
dc.typeThesiset

Failid

Originaal pakett

Nüüd näidatakse 1 - 2 2
Laen...
Pisipilt
Nimi:
MA_Thesis_Bollverk.pdf
Suurus:
26.19 MB
Formaat:
Adobe Portable Document Format
Kirjeldus:
Laen...
Pisipilt
Nimi:
graph_abstract_Bollverk.zip
Suurus:
5.27 MB
Formaat:
Compressed ZIP
Kirjeldus:
Lisad

Litsentsi pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
license.txt
Suurus:
1.71 KB
Formaat:
Item-specific license agreed upon to submission
Kirjeldus: