Hierarchical Forecasting Methods in Day-Ahead Electricity Consumption Forecasting
Kuupäev
2024
Autorid
Ajakirja pealkiri
Ajakirja ISSN
Köite pealkiri
Kirjastaja
Tartu Ülikool
Abstrakt
Paljudes rakendustes on võimalik mitu aegrida organiseerida ühte hierarhiasse nii, et hierarhia alumiste tasemete aegread saab agregeerida kõrgema taseme aegridadeks. Selliste aegridade prognoosid tuleb omavahel sobitada, et garanteerida prognoositavates aegridades olevate agregatsioonitingimuste täitmine ka aegridade prognoosides. Selle magistritöö eesmärk on arendada ja analüüsida hierarhilisi prognoosimeetodeid elektritarbimise tunnipõhiste aegridade jaoks. Tulemusena on välja töötatud ja analüüsitud LightGBM ja kantregressiooni mudelitele põhinevad hierarhilised mudelid. Kaks keerulisemat lineaarse sobitamise meetodit – OLS ja minimaalse jälje meetod (MinT) – on võrreldud alt-üles sobitamise meetodiga, mille käigus OLS ja MinT lähenemisele on leitud olulised puudujäägid. Puudujäägid tulenevad elektritarbimise prognoosivigade kovariatsioonistruktuurist. Samas, sobitamise meetodeid saab kasutada, et leida prognoose vahepealsetele tasemetele hierarhias.
Kirjeldus
Märksõnad
time series forecasting, hierarchical forecasting, day-ahead forecasting, LightGBM, ridge regression, aegridade prognoos, hierarhiline prognoos, päev-ette prognoos