Automaatse personaliseeritud esitusloendi generaator
Date
2011
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Tartu Ülikool
Abstract
Käesolevas magistritöös on esitatud automaatse personaliseeritud pleilisti tekitaja probleemi lähenemisviiside uuring. Lisaks teoreetilise tausta lühiülevaatele me dokumenteerisime oma lähenemist: meie poolt tehtud katsed ning nende tulemused. Meie algoritm koosneb kahest põhiosast: pleilisti hindamisfunktsiooni konstrueerimine ning pleilisti genereerimisstrateegia valik. Esimese ülesande lahendamiseks on valitud Naive Bayes klassifitseerija ning 5-elemendiline MIRtoolbox tööristakasti poolt kavandatud audio sisupõhiste attribuutide vektor, mis klassiitseerivad pleilisti heaks või halvaks 82% täpsusega - palju parem kui juhuslik klassifitseerija (50%). Teise probleemi lahendamiseks proovisime kolm genereerimisalgoritmi: lohistus (Shuffle), randomiseeritud otsing (Randomized Search) ning geneetiline algoritm (Genetic Algorithm). Vastavalt katsete tulemustele kõige paremini ja kiiremini töötab randomiseeritud otsingu algoritm. Kõik katsed on tehtud 5 ning 10 elemendilistel pleilistidel.
Kokkuvõttes, oleme arendanud automatiseeritud personaliseeritud pleilisti tekitaja algoritmi, mis vastavalt meie hinnangutele vastab ka kasutaja ootustele rohkem, kui juhuslikud lohistajad. Algoritmi võib kasutada keerulisema pleilistide konstrueerimiseks.