Põllukultuuride tuvastamise masinõppe mudeli tunnuste olulisuse hindamine

dc.contributor.advisorVoormansik, Kaupo, juhendaja
dc.contributor.advisorMatiisen, Tambet, juhendaja
dc.contributor.authorJärveoja, Mihkel
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2023-09-14T08:43:49Z
dc.date.available2023-09-14T08:43:49Z
dc.date.issued2021
dc.description.abstractRemotely sensed, in particular satellite data, is already widely used in agricultural parcels monitoring, and this trend is not showing signs of diminishing. Wide range of machine learning algorithms have significantly reduced the burden to interpret bulky and often complex satellite data, contributing to the exploration of new use-cases and services. In this study Random Forest classification model is used to separate 28 crop type classes in Estonia. Input data consisted of two seasons (2018, 2019) of Estonian agricultural parcels and features calculated from Sentinel-1 and Sentinel-2 satellite images, meteorological records and soil maps. Achieved multiclass weighted F1 score for year 2018 test set was 0.82 and for year 2019 0.85. Among most important features were Sentinel-1 VH and VV polarization back-scatter intensities and Sentinel-2 PSRI, NDVI and TC-vegetation indices. It was discovered that Sentinel-2 features were more prominent in early (May) and late season (August), but during mid-season (June, July) their importance decreased significantly. Sentinel-1 back-scatter features were more important during mid-season. It was concluded, that using both radar and optical satellite data ensure better classification result than using any of them separately, since they complement each other.et
dc.identifier.urihttps://hdl.handle.net/10062/92186
dc.language.isoestet
dc.publisherTartu Ülikoolet
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectPõllukultuuride automaatne tuvastamineet
dc.subjectmasinõpeet
dc.subjectjuhumetset
dc.subjecttunnuste olulisuset
dc.subjectSentinel-1et
dc.subjectSentinel-2et
dc.subject.othermagistritöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticset
dc.subject.otherinfotechnologyet
dc.titlePõllukultuuride tuvastamise masinõppe mudeli tunnuste olulisuse hindamineet
dc.typeThesiset

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Jarveoja_Infotehnoloogia_mitteinformaatikutele_2021.pdf
Size:
1.73 MB
Format:
Adobe Portable Document Format
Description:
No Thumbnail Available
Name:
RandomForest_CropClassification_repo.rar
Size:
8.74 KB
Format:
Description:
Lisad

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: