Produce Quality and Pesticide Residue Estimation Using Light Sensing

dc.contributor.advisorFlores, Huber, juhendaja
dc.contributor.authorRao, Karina
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2023-10-30T13:09:05Z
dc.date.available2023-10-30T13:09:05Z
dc.date.issued2023
dc.description.abstractWhile produce quality estimation across various stages in the value chain is essential to tackle food loss and waste, determining pesticide residue in fresh produce can alleviate the threat to human health and the environment. Light sensing offers a non-invasive and cost-effective method to establish unique fingerprints for fresh produce. During a 12-day produce decomposition period, it was established that light reflectivity is effective for the quality estimation of vegetables. The AdaBoost classification model with blue light reflectivity value, vegetable items and luminosity as input features achieved a performance accuracy of 92.4%. While measuring reflectivity intensity, it is important to account for varying lighting conditions (luminosity). Notwithstanding the success of predicting the quality of fresh produce, light sensing failed in pesticide residue estimation.et
dc.identifier.urihttps://hdl.handle.net/10062/93851
dc.language.isoenget
dc.publisherTartu Ülikoolet
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectLight sensinget
dc.subjectproduce qualityet
dc.subjectpesticide residueet
dc.subjectmachine learninget
dc.subject.othermagistritöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticset
dc.subject.otherinfotechnologyet
dc.titleProduce Quality and Pesticide Residue Estimation Using Light Sensinget
dc.typeThesiset

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Rao_andmeteadus_2023.pdf
Size:
3.18 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: