Cost-sensitive classification with deep neural networks

dc.contributor.advisorKull, Meelis, juhendaja
dc.contributor.authorBaum, Andreas
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2023-11-07T13:27:49Z
dc.date.available2023-11-07T13:27:49Z
dc.date.issued2020
dc.description.abstractTraditional classification focuses on maximizing the accuracy of predictions. This approach works well if all types of errors have the same cost. Unfortunately, in many real-world applications, the misclassification costs can be different, where some errors may be much worse than others. In such cases, it is useful to consider the costs and build a classifier that minimizes the total cost of all predictions. Earlier, cost-sensitive learning has received very little research with balanced datasets. Mostly, it has been mostly considered as one of the measures that solves the class imbalance problem. As the basis of the class imbalance problem is similar to costsensitive learning, we can mainly rely on the research done regarding the class imbalance problem. The purpose of this thesis is to experiment on how successful different cost-sensitive techniques are at minimizing the total cost compared to an ordinary neural network. The used techniques involve making neural network cost-sensitive based on the output probabilities. Additionally, oversampling, undersampling and loss functions that consider the class weights are used. The experiments are performed on 3 datasets with different degrees of difficulty and they involve binary and multiclass classification tasks. Also, 3 different cost matrix types are considered. The results show that all the techniques reduce the total prediction cost compared to an ordinary neural network. The best results were achieved using oversampling and cost-sensitive output modifications for both binary and multiclass case.et
dc.identifier.urihttps://hdl.handle.net/10062/94086
dc.language.isoenget
dc.publisherTartu Ülikoolet
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectneural networkset
dc.subjectcost-sensitive learninget
dc.subjectbinary classificationet
dc.subjectmulticlass classificationet
dc.subject.othermagistritöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticset
dc.subject.otherinfotechnologyet
dc.titleCost-sensitive classification with deep neural networkset
dc.typeThesiset

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
Baum_informaatika_2020.pdf
Suurus:
2.4 MB
Formaat:
Adobe Portable Document Format
Kirjeldus:

Litsentsi pakett

Nüüd näidatakse 1 - 1 1
Pisipilt ei ole saadaval
Nimi:
license.txt
Suurus:
1.71 KB
Formaat:
Item-specific license agreed upon to submission
Kirjeldus: