Computational Modelling of Diverse Chemical, Biochemical and Biomedical Properties
Kuupäev
2015-09-07
Autorid
Ajakirja pealkiri
Ajakirja ISSN
Köite pealkiri
Kirjastaja
Abstrakt
Modelleerimise areng ja tähtsus ravimiarenduses on tõusuteel. Käesolevas töös on selleks kasutatud erinevaid arvutuskeemilisi võtteid, konformatsioonianalüüsi, kvantitatiivseid struktuur-omadus sõltuvusi, molekulaarsildamist ning fragmendi- ja ligandipõhised meetodeid. Töö tulemusena arendati ennustavad mudelid järgmiste bioloogiliselt ja biomeditsiiniliselt oluliste sihtmärkide jaoks: 1) HPV antiviraalsed agendid; 2) uut tüüpi sääsetõrje vahendid; 3) duaalsed inhibiitorid diabeedi (tüüp 2, mellitus) ning Alzheimeri tõvega seotud bioloogilistele märklaudadele. 4) suhtelised saagised peptiidide sünteesil keemilise seondamise (chemical ligation) teel. Arendatud mudelite peamine suunitlus on ennustada omadusi uutele, seni on eksperimentaalselt testimata ainetele. Mudelite laiem eesmärk on kiirendada ravimiarenduse protsessi tervikuna.
Computational modelling plays an important role in the initial phase of drug discovery and has considerably improved in the last decade. Current thesis is focused on several applications in computational chemistry, i.e. conformational analysis, QSAR modelling, fragment-, ligand- based methods, and molecular docking methodologies. As a result, predictive models were generated for following targets: i) the activities of HPV antiviral agents and mosquito repellents; ii) the dual inhibition of Type 2 diabetes mellitus and Alzheimer’s disease; and iii) the relative abundance in chemical ligation. The main task of developed models is to predict the respective activities for novel structures, which are not yet experimentally tested. These models are oriented to strengthen the drug discovery process faster.
Computational modelling plays an important role in the initial phase of drug discovery and has considerably improved in the last decade. Current thesis is focused on several applications in computational chemistry, i.e. conformational analysis, QSAR modelling, fragment-, ligand- based methods, and molecular docking methodologies. As a result, predictive models were generated for following targets: i) the activities of HPV antiviral agents and mosquito repellents; ii) the dual inhibition of Type 2 diabetes mellitus and Alzheimer’s disease; and iii) the relative abundance in chemical ligation. The main task of developed models is to predict the respective activities for novel structures, which are not yet experimentally tested. These models are oriented to strengthen the drug discovery process faster.
Kirjeldus
Väitekirja elektrooniline versioon ei sisalda publikatsioone.
Märksõnad
arvutuskeemia, kvantitatiivne struktuur-aktiivsus sõltuvus, computational chemistry, quantitative structure-activity relation