Grammatiliste vigade parandamine sageduspõhise sünteetilise andmestikuga
Kuupäev
2022
Autorid
Ajakirja pealkiri
Ajakirja ISSN
Köite pealkiri
Kirjastaja
Tartu Ülikool
Abstrakt
In this thesis we introduce a grammatical error correction method with a
neural network trained only on synthetic data. The method is useful for languages
without big corpora for training a grammatical error correction model, like Estonian.
From a smaller human corrected corpus, we found the probabilities of word deletion,
addition, substitution and changing word order mistakes in the text. With the help of these
probabilities we created a bigger synthetic corpus and we trained a neural network for
grammatical error correction on the synthetic data. The author found that the probabilities
of mistakes do not have to be very precise and the trained neural network can correct
spelling mistakes as well as grammar mistakes.
Kirjeldus
Märksõnad
Grammatcal Error Correction, neural network, synthetic data