Comparison of category-level, item-level and general sales forecasting models

dc.contributor.advisorDumas, Marlon, juhendaja
dc.contributor.advisorMuuli, Eerik, juhendaja
dc.contributor.authorRuusmann, Laura
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2023-11-08T13:09:16Z
dc.date.available2023-11-08T13:09:16Z
dc.date.issued2020
dc.description.abstractSales forecasting is the process of estimating future sales. In this thesis, multiple methods are tested out for achieving best forecasting accuracy with lowest computational requirements. Three families of methods are investigated: a traditional statistical forecasting approach (ARIMA), classical machine learning techniques (specifically ensemble methods) and a third one based on deep learning methods (specifically recurrent neural networks with LSTM architectures). The study uses real-world sales transaction data from a large retail company in a Baltic country and the aim of this thesis is to improve their current sales forecasting system. Here we show that improving on their current sales forecasting is possible and additionally analyse the influence of promotional sales to prediction accuracy. The results show that using a combination of multiple item-level decision tree-based ensemble models yields the best prediction accuracy with regard to training complexity. Additionally, when comparing accuracy of forecasts for promotional sales and non-promotional sales, a variant of ARIMA achieves the most accurate results when forecasting promotional sales.et
dc.identifier.urihttps://hdl.handle.net/10062/94110
dc.language.isoenget
dc.publisherTartu Ülikoolet
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectmachine learninget
dc.subjectregressionet
dc.subjecttime series analysiset
dc.subjectsales forecastinget
dc.subjectretail saleset
dc.subject.othermagistritöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticset
dc.subject.otherinfotechnologyet
dc.titleComparison of category-level, item-level and general sales forecasting modelset
dc.typeThesiset

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
Ruusmann_MSc CS_2020_short.pdf
Suurus:
47.25 KB
Formaat:
Adobe Portable Document Format
Kirjeldus:

Litsentsi pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
license.txt
Suurus:
1.71 KB
Formaat:
Item-specific license agreed upon to submission
Kirjeldus: