Combinatorial nullstellensatz and its applications

dc.contributor.advisorRiet, Ago-Erik, juhendaja
dc.contributor.authorVeskus, Karl Hannes
dc.contributor.otherTartu Ülikool. Matemaatika ja statistika instituutet
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.date.accessioned2019-09-20T09:08:28Z
dc.date.available2019-09-20T09:08:28Z
dc.date.issued2019
dc.description.abstractIn 1999, Noga Alon proved a theorem, which he called the Combinatorial Nullstellensatz, that gives an upper bound to the number of zeros of a multivariate polynomial. The theorem has since seen heavy use in combinatorics, and more specifically in graph theory. In this thesis we will give an overview of the theorem, and of how it has since been applied by various researchers. Finally, we will provide an attempt at a proof utilizing a generalized version of the Combinatorial Nullstellensatz of the GM-MDS Conjecture.et
dc.identifier.urihttp://hdl.handle.net/10062/65275
dc.language.isoengen
dc.publisherTartu Ülikoolet
dc.rightsopenAccesset
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/ee/
dc.subjectbakalaureusetööet
dc.subjectgraph theoryet
dc.subjectcombinatoricset
dc.subjectpolynomialset
dc.subjectcombinatorial nullstellensatzet
dc.titleCombinatorial nullstellensatz and its applicationset
dc.typeThesiset

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
veskus_karl_hannes_bsc_2019.pdf
Size:
680.93 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: