Asünkroonsete algebraliste efektidega programmeerimiskeelte normaliseerimisomadused

dc.contributor.advisorAhman, Danel, juhendaja
dc.contributor.authorSobolev, Ilja
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2025-10-20T11:02:47Z
dc.date.available2025-10-20T11:02:47Z
dc.date.issued2025
dc.description.abstractLambda calculus is a model of computation that formally describes the syntax and behaviour of programs. There are many lambda calculi, each describing some aspect of programming languages; one example being æ, which focuses on describing effectful asynchronous programs. In this thesis we demonstrate how to use the method known as logical relations to show that all well-typed one-process programs in æ terminate. Such a property is called strong normalisation. The proof demonstrates that the method of logical relations is well-suited for reasoning about normalisation properties of asynchronous programs. The result shows that termination can be guaranteed for certain well-structured asynchronous programs, which might be useful in systems where reliability and predictability are critical, for instance embedded systems, real-time controllers, Internet of things devices and smart contracts.
dc.identifier.urihttps://hdl.handle.net/10062/116901
dc.language.isoet
dc.publisherTartu Ülikoolet
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectLambda-arvutus
dc.subjectnormaliseeruvus
dc.subjectloogilised relatsioonid
dc.subjectalgebralised efektid
dc.subjectasünkroonsus
dc.subjectnormalisation
dc.subjectlogical relations
dc.subjectalgebraic effects
dc.subjectasynchrony
dc.subject.otherbakalaureusetöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticsen
dc.subject.otherinfotechnologyen
dc.titleAsünkroonsete algebraliste efektidega programmeerimiskeelte normaliseerimisomadused
dc.typeThesis

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
sobolev_informaatika_2025.pdf
Suurus:
362.3 KB
Formaat:
Adobe Portable Document Format