A Competitive Scenario Forecaster using XGBoost and Gaussian Copula
dc.contributor.advisor | Shahroudi, Novin, juhendaja | |
dc.contributor.advisor | Kull, Meelis, juhendaja | |
dc.contributor.author | Kolomiiets, Denys | |
dc.contributor.other | Tartu Ülikool. Loodus- ja täppisteaduste valdkond | et |
dc.contributor.other | Tartu Ülikool. Arvutiteaduse instituut | et |
dc.date.accessioned | 2023-10-30T12:47:34Z | |
dc.date.available | 2023-10-30T12:47:34Z | |
dc.date.issued | 2023 | |
dc.description.abstract | In recent years scenario forecasting has been explored and developed by multiple authors. It is a useful technique for setting such as renewable energy production, which is extremely important for a society transitioning from fossil fuel energy generation. Currently, one of the methods to approach the task of scenario forecasting are generative models. The primary goal of this thesis is to develop an approach that outperforms the current best model, using the decision tree model method. This work also discusses possible improvements for decision tree models in scenario forecasting setting. Our approach has surpassed the performance of generative models, making it a solid new baseline for future researchers to beat. | et |
dc.identifier.uri | https://hdl.handle.net/10062/93846 | |
dc.language.iso | eng | et |
dc.publisher | Tartu Ülikool | et |
dc.rights | openAccess | et |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | XGBoost | et |
dc.subject | Gaussian Copula | et |
dc.subject | Quantile forecasting | et |
dc.subject | Scenario forecasting | et |
dc.subject | Energy forecasting | et |
dc.subject | Time series | et |
dc.subject.other | magistritööd | et |
dc.subject.other | informaatika | et |
dc.subject.other | infotehnoloogia | et |
dc.subject.other | informatics | et |
dc.subject.other | infotechnology | et |
dc.title | A Competitive Scenario Forecaster using XGBoost and Gaussian Copula | et |
dc.type | Thesis | et |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: