A Competitive Scenario Forecaster using XGBoost and Gaussian Copula

dc.contributor.advisorShahroudi, Novin, juhendaja
dc.contributor.advisorKull, Meelis, juhendaja
dc.contributor.authorKolomiiets, Denys
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2023-10-30T12:47:34Z
dc.date.available2023-10-30T12:47:34Z
dc.date.issued2023
dc.description.abstractIn recent years scenario forecasting has been explored and developed by multiple authors. It is a useful technique for setting such as renewable energy production, which is extremely important for a society transitioning from fossil fuel energy generation. Currently, one of the methods to approach the task of scenario forecasting are generative models. The primary goal of this thesis is to develop an approach that outperforms the current best model, using the decision tree model method. This work also discusses possible improvements for decision tree models in scenario forecasting setting. Our approach has surpassed the performance of generative models, making it a solid new baseline for future researchers to beat.et
dc.identifier.urihttps://hdl.handle.net/10062/93846
dc.language.isoenget
dc.publisherTartu Ülikoolet
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectXGBoostet
dc.subjectGaussian Copulaet
dc.subjectQuantile forecastinget
dc.subjectScenario forecastinget
dc.subjectEnergy forecastinget
dc.subjectTime serieset
dc.subject.othermagistritöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticset
dc.subject.otherinfotechnologyet
dc.titleA Competitive Scenario Forecaster using XGBoost and Gaussian Copulaet
dc.typeThesiset

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Kolomiiets_ComputerScience_2023.pdf
Size:
4.54 MB
Format:
Adobe Portable Document Format
Description:
No Thumbnail Available
Name:
MSthesis_Main.zip
Size:
49.28 MB
Format:
Compressed ZIP
Description:
Lisad

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: