Explainable Predictive Process Monitoring

dc.contributor.advisorMaggi, Fabrizio Maria, juhendaja
dc.contributor.advisorRizzi, Williams, juhendaja
dc.contributor.advisorDi Francescomarino, Chiara, juhendaja
dc.contributor.authorMusabayli, Musabir
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2023-11-07T12:47:13Z
dc.date.available2023-11-07T12:47:13Z
dc.date.issued2020
dc.description.abstractThe main goal of predictive process monitoring is predicting a possible outcome, execution time, and the cost of a business process by using historical data. The predictions are given at runtime, and historical data is provided in terms of an event log. Each predictive monitoring system contains predictive models which are the main part of it. Predictive models are used to make predictions and are built using information contained in the event logs. However, it is not enough just to show the prediction without giving an explanation since users want to know the rationale behind a prediction. If a person wants to take any action based on the prediction, it is definitely needed to explain the prediction in an understandable way otherwise it would be difficult to trust it. Therefore, in this thesis, we will show why explainable predictive monitoring is useful. We will do this by implementing different predictive model explanation methodologies and by investigating their application in real-life scenarios.et
dc.identifier.urihttps://hdl.handle.net/10062/94077
dc.language.isoenget
dc.publisherTartu Ülikoolet
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectPredictive Process Monitoringet
dc.subjectExplainable Predictive Process Monitoringet
dc.subjectProcess Analysis Toolet
dc.subject.othermagistritöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticset
dc.subject.otherinfotechnologyet
dc.titleExplainable Predictive Process Monitoringet
dc.typeThesiset

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
Musabir_Musabayli_Thesis.pdf
Suurus:
1.59 MB
Formaat:
Adobe Portable Document Format
Kirjeldus:

Litsentsi pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
license.txt
Suurus:
1.71 KB
Formaat:
Item-specific license agreed upon to submission
Kirjeldus: