Pulsed high-pressure discharge in argon: spectroscopic diagnostics, modeling and development
Kuupäev
2010-08-02
Autorid
Ajakirja pealkiri
Ajakirja ISSN
Köite pealkiri
Kirjastaja
Abstrakt
Teadaolevalt on inertsgaasi eksimerid (Ar2*, Kr2* and Xe2*) on väga suure kasuteguriga (kuni 40% sisseantud energiast) VUV kiirguse allikad. Need molekulid näivad olevat väga sobivad laseri generatsiooni saamiseks, kuid nende lühikese kiirgusliku eluea ja seotud-vaba-tüüpi elektronülemineku laia spektri tõttu on vaja väga suurt pumpamise võimsustihedust ning kümnetesse baaridesse ulatuvat gaasi rõhku, selleks et eksimeride moodustumine oleks kiirem kui nende kiirguslik kustumine. Usaldatavad spektroskoopilise diagnostika andmed energia ülekande ja muundumise kineetika kohta on olulise tähtsusega elektrilahendusega ergastatavate VUV valgusallikate edukaks arendamiseks.
Käesoleva doktoritöö eesmärgiks on suure võimsusega impulss-ruumlahenduse kõrgrõhulise (1-10 bar) argooni plasma eksmerimentaalne ja mudeluurimine, selgitamaks elektronidega seotud protsesside (nagu ergastus, rekombinatsioon, kustumine) mõju Ar2* eksimeride moodustumisele ning plasma VUV-VIS kiirgusele lahenduse läbilöögi ja rekombinatsiooni staadiumis. Diagnostikaks on kasutatud lahendusplasma spontaanset kiirgust, mis on ruumiliselt ja ajaliselt lahutatud, ning neeldumissondeerimist värvlaseri kiirega.
Eksperimendist on saadud arvulised andmed põhiliste ergastatud atomaarsete ja molekulaarsete osakeste tiheduste kohta, mida on kasutatud hindamaks, kui lähedale generatsiooni lävetingimustele on võimalik saada olemaolevate elektrilahendus-seadmete abil.
The emission of rare gas excimers (Ar2*, Kr2* and Xe2*) are known as very efficient (up to 40 % from the deposited energy) sources of VUV radiation. These molecules are very attractive for lasing, however the small radiative lifetime and broad spectral width of bound-free R2* transitions require an extremely high excitation power density, while high pressure (tens of bars) is necessary to ensure that the excimer formation is faster than the radiative decay. The reliable spectroscopic diagnostic data for energy flow kinetics in plasma is of great importance for a successful development of discharge-excited VUV light sources. The aim of the present theses is the experimental and modeling study of high-pressure (1-10 bar) argon plasma under high-power pulsed volume discharge excitation to reveal the electron-assisted processes (excitation, recombination, mixing, quenching), which have influence on the production of Ar2* excimers and VUV-VIS emission of plasma in the breakdown and recombination stages of the discharge. Spatial-time VUV-VIS spontaneous emission of the discharge plasma and dye laser absorption probing data were used for the diagnostics. Quantitative experimental data about densities of key excited atomic and molecular species are obtained for the estimation of discharge pumping efficiency and how close to the lasing threshold conditions we are able to approach in the real discharge devices.
The emission of rare gas excimers (Ar2*, Kr2* and Xe2*) are known as very efficient (up to 40 % from the deposited energy) sources of VUV radiation. These molecules are very attractive for lasing, however the small radiative lifetime and broad spectral width of bound-free R2* transitions require an extremely high excitation power density, while high pressure (tens of bars) is necessary to ensure that the excimer formation is faster than the radiative decay. The reliable spectroscopic diagnostic data for energy flow kinetics in plasma is of great importance for a successful development of discharge-excited VUV light sources. The aim of the present theses is the experimental and modeling study of high-pressure (1-10 bar) argon plasma under high-power pulsed volume discharge excitation to reveal the electron-assisted processes (excitation, recombination, mixing, quenching), which have influence on the production of Ar2* excimers and VUV-VIS emission of plasma in the breakdown and recombination stages of the discharge. Spatial-time VUV-VIS spontaneous emission of the discharge plasma and dye laser absorption probing data were used for the diagnostics. Quantitative experimental data about densities of key excited atomic and molecular species are obtained for the estimation of discharge pumping efficiency and how close to the lasing threshold conditions we are able to approach in the real discharge devices.
Kirjeldus
Väitekirja elektrooniline versioon ei sisalda publikatsioone.
Märksõnad
doktoritööd