Exploring the Value of Weakly-Supervised Deep Learning Approaches for Artefact Segmentation in Brightfield Microscopy Images

dc.contributor.advisorAli, Mohammed, juhendaja
dc.contributor.advisorFishman, Dmytro, juhendaja
dc.contributor.authorHollo, Kaspar
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2023-09-21T08:05:58Z
dc.date.available2023-09-21T08:05:58Z
dc.date.issued2021
dc.description.abstractBrightfield microscopy is of great importance as it offers researchers a relatively simple way to quantify cellular experiments. However, brightfield images often contain a variety of artefacts that should be segmented and thereafter neutralized so that they would not affect the quantitative measurements of cellular experiments. While fully-supervised deep learning models offer state-of-the-art performance in most segmentation tasks in computer vision, it is laborious to acquire the pixel-level labels needed to train these models. Alternatively, segmentation tasks can also be solved using more time- and cost-effective weakly-supervised deep learning models that use image-level labels for training. In this thesis, we compare the performances of fully- (e.g., U-Net) and weakly-supervised approaches (e.g., Score-CAM) to determine whether weakly-supervised approaches could be used as a cheaper but still well-performing solution for segmenting artefacts in brightfield images. Six separate experiments with various fully- and weakly-supervised approaches, image datasets and method ensembles are carried out. The results of the experiments showed that with the number of images and labels currently available, none of the weakly-supervised approaches were able to replicate the performance of the baseline fully-supervised approach. However, some of the weakly supervised approaches, like the combined Score-CAM and U-Net approach, showed promising segmentation results. Moreover, the same approach also showed better generalizability on an unseen dataset than the baseline fully-supervised approach. Future work is required to find the amount of weak supervision signal needed to match the performance of the fully-supervised approaches.et
dc.identifier.urihttps://hdl.handle.net/10062/92311
dc.language.isoenget
dc.publisherTartu Ülikoolet
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectdeep learninget
dc.subjectneural networkset
dc.subjectweakly-supervised learninget
dc.subjectbrightfield microscopyet
dc.subjectartefactset
dc.subject.othermagistritöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticset
dc.subject.otherinfotechnologyet
dc.titleExploring the Value of Weakly-Supervised Deep Learning Approaches for Artefact Segmentation in Brightfield Microscopy Imageset
dc.typeThesiset

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
hollo_softwareengineering_2021.pdf
Suurus:
4.02 MB
Formaat:
Adobe Portable Document Format
Kirjeldus:

Litsentsi pakett

Nüüd näidatakse 1 - 1 1
Pisipilt ei ole saadaval
Nimi:
license.txt
Suurus:
1.71 KB
Formaat:
Item-specific license agreed upon to submission
Kirjeldus: