Towards AI for cloud services reliability using combined metrics

dc.contributor.advisorSrirama, Satish Narayana, juhendaja
dc.contributor.advisorPhD Dehury, Chinmaya, juhendaja
dc.contributor.advisorMSc Lind, Artjom, juhendaja
dc.contributor.authorChhetri, Tek Raj
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2023-11-06T14:00:01Z
dc.date.available2023-11-06T14:00:01Z
dc.date.issued2020
dc.description.abstractWith the emergence of cloud computing and the Quality of Services (QoS), Compute Power, Performance, and Scalability it offers, the paradigm of computing has shifted towards the cloud. Due to attractiveness cloud offers, today, more and more businesses, research, and individuals are adopting cloud services. Even with the maturity of the cloud, reliability is still a concern. The reason being the constant occurrence of failure causes financial loss as well as a negative impact on its users as it directly affects QoS. Further, the scale and heterogeneity make it more prone to failure, highlighting the necessity for a robust solution to maintain the attractiveness and prevent financial loss. By predicting failure before it could happen, we can improve the reliability. Artificial Intelligence, now, has made significant progress, finding itself a place in all possible areas. In our study we present artificial intelligence with a combined metrics approach to improve the failure prediction. An experiment conducted with data recorded from more than 100 cloud servers shows significant improvement in failure prediction with high prediction accuracy, precision, and recall compared to state of the art studies.et
dc.identifier.urihttps://hdl.handle.net/10062/94061
dc.language.isoenget
dc.publisherTartu Ülikoolet
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectCloud Computinget
dc.subjectArtificial Intelligenceet
dc.subjectFailure Predictionet
dc.subjectReliabilityet
dc.subjectFault-toleranceet
dc.subject.othermagistritöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticset
dc.subject.otherinfotechnologyet
dc.titleTowards AI for cloud services reliability using combined metricset
dc.typeThesiset

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
chhetri_computerscience_2020.pdf
Suurus:
2.16 MB
Formaat:
Adobe Portable Document Format
Kirjeldus:

Litsentsi pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
license.txt
Suurus:
1.71 KB
Formaat:
Item-specific license agreed upon to submission
Kirjeldus: