Failure prediction of European high-tech companies

dc.contributor.advisorLukason, Oliver, juhendaja
dc.contributor.authorKlaas, Hannes
dc.contributor.authorVals, Ivo
dc.contributor.otherTartu Ülikool. Majandusteaduskondet
dc.contributor.otherTartu Ülikool. Sotsiaalteaduste valdkondet
dc.date.accessioned2020-07-10T12:02:36Z
dc.date.available2020-07-10T12:02:36Z
dc.date.issued2020
dc.description.abstractThe aim of this thesis is to develop a model for predicting the failure of high-tech and mediumhigh tech companies from different European countries. This study uses firm-level data from the Bureau van Dijk’s Amadeus database and includes the financial information of 32,929 firms. The data were collected from the financial statements of the companies for the period 2012–2017 and logistic regression was used as the analysis method. Findings indicate that the accuracies of individual variables across countries are not very high and there are large differences in the accuracies of individual ratios when comparing non-failed and failed firms. Aggregate accuracies for all ratios within country and across countries show that the most accurate predictions are obtained for non-failed firms using the ratios for the preceding two years combined. The practical value of this work lies in the knowledge of the relevant variables, which allows companies to focus in a timely manner on aspects that have determined failure in the past. Subsequent works should attempt to use a larger sample of European countries and include other variables in addition to financial ratios.et
dc.identifier.urihttp://hdl.handle.net/10062/68464
dc.language.isoenget
dc.publisherTartu Ülikoolet
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectlogistiline regressioonet
dc.subjectlogistic regressioonen
dc.subject.othermagistritöödet
dc.subject.otherprognoosimine (maj.)et
dc.subject.otherprognostikaet
dc.subject.otherebaeduet
dc.subject.othertootmissektoret
dc.subject.othertehnoloogiaettevõttedet
dc.subject.otherstatistiline analüüset
dc.subject.otherregressioonanalüüset
dc.subject.otherEuroopaet
dc.subject.othereconomic forecastingen
dc.subject.otherpredictionen
dc.subject.otherfailureen
dc.subject.othermanufacturingen
dc.subject.othertechnology companiesen
dc.subject.otherstatistical analysisen
dc.subject.otherregression analysisen
dc.subject.othermaster's thesesen
dc.titleFailure prediction of European high-tech companiesen
dc.typeThesisen

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
klaas_and_vals.pdf
Suurus:
342.92 KB
Formaat:
Adobe Portable Document Format
Kirjeldus:

Litsentsi pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
license.txt
Suurus:
1.67 KB
Formaat:
Item-specific license agreed upon to submission
Kirjeldus: