SpiralNet: Two-stage recursive-CNN for microscopy image segmentation

dc.contributor.advisorMajoral, Daniel, juhendaja
dc.contributor.authorDekret, Marharyta
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2023-10-03T11:01:14Z
dc.date.available2023-10-03T11:01:14Z
dc.date.issued2019
dc.description.abstractMicroscopy image segmentation demands a higher precision level than segmentation for natural images. Meticulous accuracy is required for medical applications. SpiralNet is designed as a new segmentation method allowing to segment microscopy images of complex shapes with high attention to details simulating human perception. The method is able to perform both instance and semantic segmentation. SpiralNet consists of two stages, the first stage crops the initial image into smaller regions and with a scoring network filters out regions without objects. The second stage takes each region and fully segments it with a recursive segmentation network. Afterwards, the predicted regions are merged into the final full prediction mask. SpiralNet outperforms U-Net with a 0:969 F1 score versus U-Net 0:965 on the test subset, segmenting more accurate individual object shapes and showing better separation between connected objects. Even though SpiralNet showed great instance and semantic segmentation performance, there are still various ways to improve the method. For instance, with parallel segmentation of several regions, adding attention or changing the number of skip modules. Additionally, future work will study the application of SpiralNet to other datasets.et
dc.identifier.urihttps://hdl.handle.net/10062/93297
dc.language.isoenget
dc.publisherTartu Ülikoolet
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectDeep learninget
dc.subjectmicroscopyet
dc.subjectsegmentationet
dc.subjectSpiralNetet
dc.subject.othermagistritöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticset
dc.subject.otherinfotechnologyet
dc.titleSpiralNet: Two-stage recursive-CNN for microscopy image segmentationet
dc.typeThesiset

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
Dekret_computerscience_2020.pdf
Suurus:
2.67 MB
Formaat:
Adobe Portable Document Format
Kirjeldus:

Litsentsi pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
license.txt
Suurus:
1.71 KB
Formaat:
Item-specific license agreed upon to submission
Kirjeldus: