Splitting User Stories Using Supervised Machine Learning

dc.contributor.advisorScott, Ezequiel, juhendaja
dc.contributor.authorShahid, Muhammad Bilal
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2023-11-08T14:17:06Z
dc.date.available2023-11-08T14:17:06Z
dc.date.issued2020
dc.description.abstractUser stories are a well-known tool for representing requirements. They define small fragments of the system and help in the developer’s daily work. When we talk about user stories, then splitting them into tasks is common. Many approaches can be used to split a user story into tasks but these all approaches are based on manual working. In this era, where everything is now becoming digitalized. User stories should move to the next phase as well. In this paper, we will implement a novel idea to split a user story into tasks atomically using machine learning. We have used four machine learning algorithms random forest, SVM, KNN, and decision tree (ctree) on three open-source projects from Jira. The dataset we have used for this thesis was imbalanced, so we have used ROSE (randomly over sampling examples) and SMOTE (Synthetic Minority Oversampling Technique) to make a balanced dataset. We have applied machine learning algorithms separately on each project and also all projects combined into one dataset and then made comparisons on the results.et
dc.identifier.urihttps://hdl.handle.net/10062/94124
dc.language.isoenget
dc.publisherTartu Ülikoolet
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectUser Storyet
dc.subjectSplittinget
dc.subjectRequirementset
dc.subjectRandom Forestet
dc.subjectSVMet
dc.subjectKNNet
dc.subjectDecision Treeet
dc.subject.othermagistritöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticset
dc.subject.otherinfotechnologyet
dc.titleSplitting User Stories Using Supervised Machine Learninget
dc.typeThesiset

Failid

Originaal pakett

Nüüd näidatakse 1 - 2 2
Laen...
Pisipilt
Nimi:
shahid_software_engineering_2020.pdf
Suurus:
1.19 MB
Formaat:
Adobe Portable Document Format
Kirjeldus:
Pisipilt ei ole saadaval
Nimi:
finalSubmission.zip
Suurus:
485.85 KB
Formaat:
Compressed ZIP
Kirjeldus:
Lisad

Litsentsi pakett

Nüüd näidatakse 1 - 1 1
Pisipilt ei ole saadaval
Nimi:
license.txt
Suurus:
1.71 KB
Formaat:
Item-specific license agreed upon to submission
Kirjeldus: