Model selection and AIC

dc.contributor.advisorSova, Joonas, juhendaja
dc.contributor.authorGuliyev, Farhad
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Matemaatika ja statistika instituutet
dc.date.accessioned2025-06-25T14:01:11Z
dc.date.available2025-06-25T14:01:11Z
dc.date.issued2025
dc.description.abstractThis master thesis investigates the role of Akaike Information Criterion (AIC) in choosing statistical models, combining theoretical foundations with practical simulations to evaluate its effectiveness. The theoretical part of the thesis shows that AIC is based on Kullback-Leibler divergence and cross-entropy, emphasizing its role in minimizing information loss while maintaining a balance between model fit and complexity. In practical analysis, samples from parametric distributions supported on unit interval are simulated to evaluate the effectiveness of AIC in correctly identifying the true model among various competing alternatives. The results demonstrate that AIC successfully prevents overfitting by penalizing excessive parameters. Moreover, the asymptotic behavior of AIC is also analyzed to see if and how the probability of choosing the correct model converges as the sample size increases. In addition, AIC bias-corrected estimate of the cross-entropy is analyzed and compared with other bias-corrected estimates in order to evaluate its effectiveness in reducing bias. Overall, this thesis demonstrates the importance of AIC in model selection by optimizing the trade-off between model fit and complexity.en
dc.identifier.urihttps://hdl.handle.net/10062/111681
dc.language.isoen
dc.publisherTartu Ülikoolet
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Estoniaen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/ee/
dc.subjectAkaike Information Criterion (AIC)en
dc.subjectmodel selectionen
dc.subjectKullback- Leibler divergenceen
dc.subjectcross-entropyen
dc.subjectoverfittingen
dc.subjectbias-correctionen
dc.subjectAkaike infokriteerium (AIC)et
dc.subjectmudeli valiket
dc.subjectKullback-Leibleri lahknemineet
dc.subjectristentroopiaet
dc.subjectülemäärane sobitamineet
dc.subjectnihke paranduset
dc.subject.othermagistritöödet
dc.subject.othervõrguväljaandedet
dc.titleModel selection and AICen
dc.typeThesis

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
farhad_guliyev_msc_2025.pdf
Suurus:
629.95 KB
Formaat:
Adobe Portable Document Format