Quantum Computing Techniques for Machine Learning
| dc.contributor.advisor | Theis, Dirk Oliver, juhendaja | |
| dc.contributor.author | Lei, Andrew | |
| dc.contributor.other | Tartu Ülikool. Loodus- ja täppisteaduste valdkond | et |
| dc.contributor.other | Tartu Ülikool. Arvutiteaduse instituut | et |
| dc.date.accessioned | 2023-11-08T13:04:10Z | |
| dc.date.available | 2023-11-08T13:04:10Z | |
| dc.date.issued | 2020 | |
| dc.description.abstract | Quantum computing has been shown to provide a considerable speed boost for a number of problems. One area that some have looked into is using quantum computing for machine learning. I implement several methods for encoding data on the Iris dataset and compare their performance. Variational input encoding as suggested by Theis and Vidal seem to provide an advantage for Havlicek encoding. There were no similar improvements for amplitude encoding, but this could be because of the implementation. | et |
| dc.identifier.uri | https://hdl.handle.net/10062/94108 | |
| dc.language.iso | eng | et |
| dc.publisher | Tartu Ülikool | et |
| dc.rights | openAccess | et |
| dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
| dc.subject | Quantum computing | et |
| dc.subject | machine learning | et |
| dc.subject | quantum machine learning | et |
| dc.subject.other | magistritööd | et |
| dc.subject.other | informaatika | et |
| dc.subject.other | infotehnoloogia | et |
| dc.subject.other | informatics | et |
| dc.subject.other | infotechnology | et |
| dc.title | Quantum Computing Techniques for Machine Learning | et |
| dc.type | Thesis | et |
Failid
Litsentsi pakett
1 - 1 1
Laen...
- Nimi:
- license.txt
- Suurus:
- 1.71 KB
- Formaat:
- Item-specific license agreed upon to submission
- Kirjeldus: