Quantum Computing Techniques for Machine Learning

dc.contributor.advisorTheis, Dirk Oliver, juhendaja
dc.contributor.authorLei, Andrew
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2023-11-08T13:04:10Z
dc.date.available2023-11-08T13:04:10Z
dc.date.issued2020
dc.description.abstractQuantum computing has been shown to provide a considerable speed boost for a number of problems. One area that some have looked into is using quantum computing for machine learning. I implement several methods for encoding data on the Iris dataset and compare their performance. Variational input encoding as suggested by Theis and Vidal seem to provide an advantage for Havlicek encoding. There were no similar improvements for amplitude encoding, but this could be because of the implementation.et
dc.identifier.urihttps://hdl.handle.net/10062/94108
dc.language.isoenget
dc.publisherTartu Ülikoolet
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectQuantum computinget
dc.subjectmachine learninget
dc.subjectquantum machine learninget
dc.subject.othermagistritöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticset
dc.subject.otherinfotechnologyet
dc.titleQuantum Computing Techniques for Machine Learninget
dc.typeThesiset

Failid

Originaal pakett

Nüüd näidatakse 1 - 2 2
Laen...
Pisipilt
Nimi:
lei_computer_science_2020.pdf
Suurus:
3.78 MB
Formaat:
Adobe Portable Document Format
Kirjeldus:
Laen...
Pisipilt
Nimi:
experiment_code.zip
Suurus:
10.06 KB
Formaat:
Compressed ZIP
Kirjeldus:
Lisad

Litsentsi pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
license.txt
Suurus:
1.71 KB
Formaat:
Item-specific license agreed upon to submission
Kirjeldus: