Energy-efficient Federated Learning for Data Analytics in Fog Networks

dc.contributor.advisorAdhikari, Mainak, juhendaja
dc.contributor.advisorSrirama, Satish Narayana, juhendaja
dc.contributor.authorPaul, Souvik
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2023-09-21T09:40:06Z
dc.date.available2023-09-21T09:40:06Z
dc.date.issued2021
dc.description.abstractFederated Learning(FL) is a collaborative and distributed machine learning technique that enables training over many clients without sharing the client’s data. The advent of a massive number of low-powered Internet of Things (IoT) devices and local fog devices with sufficient computational power have made it possible to take advantage of this distributed framework in real-life scenarios. However, the standard IoT-enabled fog framework suffers from significant energy expense due to the intercommunication between the computing devices. The existing state-of-the-art strategies have proposed altering the core architecture to reduce energy expenses that work only under ideal conditions on independent and identically distributed (IID) data. Nevertheless, the vast deployment of low-cost sensor devices in use cases like Smart Agriculture makes it impossible for such ideal conditions to prevail in real life. Motivated by the above-mentioned challenges, in this thesis, an energy-efficient fog framework for smart irrigation is proposed to mitigate these issues. The proposed algorithm utilizes data sampling and optimal resource provisioning methodologies to maximize resource utilization, which results in a significant energy reduction in the framework. Besides that, the local gateway devices of the proposed fog framework serve as functional units based on redundant data filtering, outlier removal, and lossy data aggregation to minimize data transmission. The analysis of this proposed model is done by training on data from agricultural field sensors using a data simulator to predict irrigation requirements. From the simulation results, it is observed that the proposed algorithm reduces the total energy consumption by 51.5% and 15.2% compared with Split Learning(SL) and standard FL, respectively, while achieving the prediction accuracy of 91.1%.et
dc.identifier.urihttps://hdl.handle.net/10062/92317
dc.language.isoenget
dc.publisherTartu Ülikoolet
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectFederated Learninget
dc.subjectFog Computinget
dc.subjectInternet of Thingset
dc.subjectData Aggregationet
dc.subjectResource provisioninget
dc.subject.othermagistritöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticset
dc.subject.otherinfotechnologyet
dc.titleEnergy-efficient Federated Learning for Data Analytics in Fog Networkset
dc.typeThesiset

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
paul_computerscience_2021.pdf
Suurus:
1.64 MB
Formaat:
Adobe Portable Document Format
Kirjeldus:

Litsentsi pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
license.txt
Suurus:
1.71 KB
Formaat:
Item-specific license agreed upon to submission
Kirjeldus: