Machine Learning Based Risk Scoring for Money Mule Detection

dc.contributor.advisorRaun, Kristo, juhendaja
dc.contributor.advisorMartignano, Anna, juhendaja
dc.contributor.advisorJöhnemark, Alexander, juhendaja
dc.contributor.authorHiiu, Annabel
dc.contributor.authorKarumaa, Anti
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2025-10-21T11:16:41Z
dc.date.available2025-10-21T11:16:41Z
dc.date.issued2025
dc.description.abstractMoney laundering is a serious problem for the financial systems, as it helps criminals hide illegal funds and damages trust in banks. Money mules are individuals who transfer money on behalf of others, often unknowingly, and play a central role in these activities. Detecting money mules is a major challenge for financial institutions. Traditional detection methods rely on fixed rules that are not flexible enough to keep up with changing criminal tactics. This thesis explores the application of machine learning models for detecting money mules by assigning client-level risk scores based on transaction habits, product usage, and personal information. Multiple models were evaluated, with XGBoost demonstrating the highest area under the precision–recall curve (AUPRC) of 0.1314, indicating strong performance in this highly imbalanced setting. The model shows potential to detect over half of known money mules while maintaining a manageable false positive rate. These findings suggest that integrating machine learning into anti-money laundering systems can improve anti-money laundering efforts, helping banks prevent criminal activity, protect their customers and maintain their reputation.
dc.description.abstract Rahapesu on tõsine probleem finantsüsteemides, kuna see aitab kurjategijatel varjata ebaseaduslikke summasid ja kahjustab pankade usaldusväärsust. Rahamuulad on isikud, kes tihti eneselegi teadmata kannavad raha teiste eest ja mängivad rahapesus keskset rolli. Rahamuulade tuvastamine on finantsasutustele suur väljakutse. Traditsioonilised tuvastamismeetodid tuginevad kindlatele reeglitele, mis ei ole piisavalt paindlikud, et kohaneda muutuvate kuritegelike taktikatega. Käesolev magistritöö uurib masinõppe mudelite rakendamist rahamuulade tuvastamiseks, määrates klientidele riskiskoori nende tehinguharjumuste, toodete kasutamise ja isikuandmete põhjal. Hinnati mitmeid mudeleid, millest parima tulemuse andis XGBoost, saavutades täpsuse-saagis kõvera aluse pindala (AUPRC) väärtuseks 0,1314. See on hea tulemus arvestades tasakaalustamata andmestikus. Mudel tuvastas üle poole teadaolevatest rahamuuladest, hoides samal ajal valepositiivsete määrad mõistlikul tasemel. Töö tulemused viitavad, et masinõppe integreerimine rahapesuvastastesse süsteemidesse võib aitada kaasa kuritegude ennetamisele, aidata pankadel kaitsta oma kliente ning säilitada usaldusväärsust.
dc.identifier.urihttps://hdl.handle.net/10062/116978
dc.language.isoen
dc.publisherTartu Ülikoolet
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectMachine Learning
dc.subjectMoney Mules
dc.subjectRisk Scoring
dc.subjectBanking
dc.subjectrahamuulad
dc.subjectpangandus
dc.subjectriskihindamine
dc.subject.othermagistritöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticsen
dc.subject.otherinfotechnologyen
dc.titleMachine Learning Based Risk Scoring for Money Mule Detection
dc.title.alternativeMasinõppel põhinev riskiskoorimine rahamuulade tuvastamiseks
dc.typeThesisen

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
hiiu_karumaa_andmeteadus_2025.pdf
Suurus:
4.9 MB
Formaat:
Adobe Portable Document Format