ProLift: A Web Application to Discover Causal Treatment Rules From Business Process Event Logs

dc.contributor.advisorDumas, Marlon, juhendaja
dc.contributor.authorKopõlov, Aleksei
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2023-08-31T13:09:12Z
dc.date.available2023-08-31T13:09:12Z
dc.date.issued2022
dc.description.abstractCausal process mining is a sub-field of process mining belonging to a family of techniques related to the field of business process management(BPM). The main goal of causal process mining is to utilize real process execution logs and causal machine learning techniques in order to discover, analyze and improve business processes. In this Master’s Thesis, we provide a detailed overview of a web-based application and all of its components, developed by the thesis author. The main goal of the application is to utilize the latest discoveries in causal process mining techniques that are capable of discovering and quantifying cause-effect relations. The additional goal of the application is to provide end users with a responsive and user-friendly interface, which allows them to discover treatment rules from a business process event logs and to display these treatment rules in an easy-to-understand manner. The Web application outlined in the thesis implements an approach to discover causal treatment rules proposed by Bozorghi et al. This approach uses uplift trees to discover rules that relate a treatment (e.g. giving a phone call to a user) with an increased probability that a positive outcome will be achieved (e.g. the customer will be satisfied with the service they receive).et
dc.identifier.urihttps://hdl.handle.net/10062/91926
dc.language.isoenget
dc.publisherTartu Ülikoolet
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectBusiness process managementet
dc.subjectcausal process mininget
dc.subjectcausal machine learninget
dc.subjectuplift treeset
dc.subjectprocess analytics toolet
dc.subject.othermagistritöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticset
dc.subject.otherinfotechnologyet
dc.titleProLift: A Web Application to Discover Causal Treatment Rules From Business Process Event Logset
dc.typeThesiset

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
kopolov_computerscience_2022.pdf
Suurus:
2.47 MB
Formaat:
Adobe Portable Document Format
Kirjeldus:

Litsentsi pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
license.txt
Suurus:
1.71 KB
Formaat:
Item-specific license agreed upon to submission
Kirjeldus: