Development of tissue-specific homing peptides using probabilistic machine learning

dc.contributor.advisorTeesalu, Tambet, juhendaja
dc.contributor.advisorSedman, Juhan, juhendaja
dc.contributor.advisorPleiko, Karlis, juhendaja
dc.contributor.authorTootsi, Jasper August
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Molekulaar- ja rakubioloogia instituutet
dc.date.accessioned2025-08-04T10:15:08Z
dc.date.available2025-08-04T10:15:08Z
dc.date.issued2025
dc.description.abstractA central challenge for curing complex diseases is inefficient drug delivery. One potential solution is to use homing peptides that target unique tissue markers for selective drug delivery, increasing therapeutic effectiveness and decreasing side effects. This thesis presents an integrated in silico and in vitro workflow that accelerates the discovery and optimization of receptor-specific homing peptides from months and years to weeks. High-copy T7-phage display proved the importance of multivalency, showing higher binding in all cases. These results show that generative modelling can learn receptor-specific pharmacophores and potentially yield functional ligands, offering a hand to time-consuming receptor-aware peptide design.
dc.identifier.urihttps://hdl.handle.net/10062/112311
dc.language.isoen
dc.publisherTartu Ülikoolet
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Estoniaen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/ee/
dc.subjectgenerative models
dc.subjectphage display
dc.subjecthoming peptides
dc.subjecttargeted nanomedicine
dc.subject.otherbakalaureusetöödet
dc.titleDevelopment of tissue-specific homing peptides using probabilistic machine learning
dc.typeThesisen

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
Jasper_August_Tootsi.pdf
Suurus:
6.94 MB
Formaat:
Adobe Portable Document Format