Efficient Non-interactive Zero-knowledge Protocols in the CRS Model
Date
2017-01-12
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Koos digitaalse ajastu võidukäiguga on interneti vahendusel võimalik sooritada üha ulmelisemana näivaid tegevusi.
Täielikule krüpteeringule ehitatud mobiilsed rakendused, nagu näiteks WhatsApp, suudavad tagada, et kõne või sõnum jõuaksid üksnes õige adressaadini.
Enamik pangasüsteeme garanteerivad TLS protokolli kasutades, et arvete maksmisel ja ülekannete tegemisel poleks nende andmeid kellelgi võimalik lugeda ega muuta.
Mõned riigid pakuvad võimalust elektroonilisel teel hääletada (näiteks Eesti) või referendumeid läbi viia (näiteks Šveits), tagades sealjuures traditsioonilise paberhääletuse tasemel turvalisuse kriteeriumid.
Kõik eelnevalt kirjeldatud tegevused vajavad kasutajate turvalisuse tagamiseks krüptograafilist protokolli.
Tegelikkuses ei saa me kunagi eeldada, et kõik protokolli osapooled järgivad protokolli spetsifikatsiooni.
Reaalses elus peab protokolli turvalisuseks iga osapool tõestama, et ta seda järgis ilma privaatsuse ohverdamiseta.
Üks viis seda teha on nullteadmusprotokolli abil. Nullteadmusprotokoll on tõestus, mis ei lekita mingit informatsiooni peale selle, et väide on tõene.
Tihti tahame, et nullteadmusprotokoll oleks mitteinteraktiivne. Sellisel juhul piisab, kui tõestus on arvutatud ainult ühe korra ning verifitseerijatel on igal ajal võimalik seda kontrollida.
On kaks peamist mudelit, mis võimaldavad mitteinteraktiivsete nullteadmusprotokollide loomist: juhusliku oraakli (JO) mudel ja referentssõne mudel.
JO mudeli protokollid on väga efektiivsed, kuid mõningate piirangute tõttu eelistame referentssõne mudelit.
Selles töös esitleme kolme stsenaariumit, milles mitteinteraktiivne nullteadmus on asjakohane: verifitseeritav arvutamine, autoriseerimine ja elektrooniline hääletamine.
Igas stsenaariumis pakume välja nullteadmusprotokolli referentssõne mudelis, mis on seni efektiivseim ning võrreldava efektiivsusega protokollidega JO mudelis.
In the current digital era, we can do increasingly astonishing activities remotely using only our electronic devices. Using mobile applications such as WhatsApp, we can contact someone with the guarantee, using an end-to-end encryption protocol, that only the recipient can know the conversation's contents. Most banking systems enable us to pay our bills and perform other financial transactions, and use the TLS protocol to guarantee that no one can read or modify the transaction data. Some countries provide an option to vote electronically in an election (e.g. Estonia) or referendum (e.g. Switzerland) with similar privacy guarantees to traditional paper voting. In all these activities, a cryptographic protocol is required to ensure users' privacy. In reality, some parties participating in a protocol might not act according to what was agreed in the protocol specification. Hence, for a real world protocol to be secure, we also need each party to prove that it behaves honestly, but without sacrificing privacy of its inputs. This can be done using a zero-knowledge argument: a proof by a polynomial-time prover that gives nothing else away besides its correctness. In many cases, we want a zero-knowledge argument to be non-interactive and transferable, so that it is computed only once, but can be verified by many verifiers at any future time. There are two main models that enable transferable non-interactive zero-knowledge (NIZK) arguments: the random oracle (RO) model and the common reference string (CRS) model. Protocols in the RO model are very efficient, but due to some of its limitations, we prefer working in the CRS model. In this work we provide three scenarios where NIZK arguments are relevant: verifiable computation, authorization, and electronic voting. In each scenario, we propose NIZK arguments in the CRS model that are more efficient than existing ones, and are comparable in efficiency to the best known NIZK arguments in the RO model.
In the current digital era, we can do increasingly astonishing activities remotely using only our electronic devices. Using mobile applications such as WhatsApp, we can contact someone with the guarantee, using an end-to-end encryption protocol, that only the recipient can know the conversation's contents. Most banking systems enable us to pay our bills and perform other financial transactions, and use the TLS protocol to guarantee that no one can read or modify the transaction data. Some countries provide an option to vote electronically in an election (e.g. Estonia) or referendum (e.g. Switzerland) with similar privacy guarantees to traditional paper voting. In all these activities, a cryptographic protocol is required to ensure users' privacy. In reality, some parties participating in a protocol might not act according to what was agreed in the protocol specification. Hence, for a real world protocol to be secure, we also need each party to prove that it behaves honestly, but without sacrificing privacy of its inputs. This can be done using a zero-knowledge argument: a proof by a polynomial-time prover that gives nothing else away besides its correctness. In many cases, we want a zero-knowledge argument to be non-interactive and transferable, so that it is computed only once, but can be verified by many verifiers at any future time. There are two main models that enable transferable non-interactive zero-knowledge (NIZK) arguments: the random oracle (RO) model and the common reference string (CRS) model. Protocols in the RO model are very efficient, but due to some of its limitations, we prefer working in the CRS model. In this work we provide three scenarios where NIZK arguments are relevant: verifiable computation, authorization, and electronic voting. In each scenario, we propose NIZK arguments in the CRS model that are more efficient than existing ones, and are comparable in efficiency to the best known NIZK arguments in the RO model.
Description
Väitekirja elektrooniline versioon ei sisalda publikatsioone.
Keywords
referentssõne, krüptograafia, infoturve, võrguprotokollid, reference string, cryptography, information security, network protocols