Scaling Out the Discovery of Business Process Simulation Models from Event Logs

dc.contributor.advisorDumas, Marlon, juhendaja
dc.contributor.advisorChapela de la Campa, David, juhendaja
dc.contributor.authorSuvorau, Ihar
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2023-10-19T10:47:05Z
dc.date.available2023-10-19T10:47:05Z
dc.date.issued2023
dc.description.abstractBackground. The automated discovery of business process simulation (BPS) models has received considerable attention in the process mining community in the past decade. The main open question in this field is how to make such discovery accurate, fast and efficient to provide more value for the end-users. Aim. This thesis aims at re-architecting an existing tool for automated BPS model discovery, namely Simod, to manage varying workloads in a scalable and robust manner. Methods. Scalability and robustness are achieved through building a distributed event-based system using the integration with the Kubernetes API. An efficiency metric has been used to evaluate the scalability of the final solution. A robustnessunder- load experiment shows that the re-architected system remains available under high demand. Results. The results of the validation experiments showed the system is scalable for small-sized event logs and robust under high load. A limitation of the study is that the testing environment, based on kind-clusters of 1, 2, 3, and 4 worker nodes, is not suitable for large-scale load testing experiments. Conclusion. This thesis provides a framework for implementing scalable, robust, and resilient workflows on Kubernetes for BPS model discovery that can benefit the process mining community. Further work is needed to improve the Simod architecture by splitting it into smaller independent components to achieve higher scalability and resource utilisation.et
dc.identifier.urihttps://hdl.handle.net/10062/93621
dc.language.isoenget
dc.publisherTartu Ülikoolet
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectProcess mininget
dc.subjectprocess discoveryet
dc.subjectprocess simulationet
dc.subjecthorizontal scalinget
dc.subjectKuberneteset
dc.subjectcloud architectureet
dc.subject.othermagistritöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticset
dc.subject.otherinfotechnologyet
dc.titleScaling Out the Discovery of Business Process Simulation Models from Event Logsen
dc.typeThesiset

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
Suvorau_MSc_software_engineering_2023.pdf
Suurus:
3.12 MB
Formaat:
Adobe Portable Document Format
Kirjeldus:

Litsentsi pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
license.txt
Suurus:
1.71 KB
Formaat:
Item-specific license agreed upon to submission
Kirjeldus: