Computational methods for NIPT-based aneuploidy and microdeletion screening
Laen...
Kuupäev
Autorid
Ajakirja pealkiri
Ajakirja ISSN
Köite pealkiri
Kirjastaja
Tartu Ülikooli Kirjastus
Abstrakt
Mitteinvasiivne sünnieelne geneetiline testimine (NIPT) on sõeluuringu meetod loote kromosoomhaiguste riski hindamiseks raseda vereproovist. NIPT põhineb platsenta päritolu rakuvaba DNA sekveneerimisel ja andmeanalüüsil. Lisaks loote kromosoomi koopiaarvu muutustele võimaldab NIPT tuvastada ka patogeensete mikrodeletsioonide riski. Mikrodeletsiooni sündroom on lühikese kromosoomiosa kaost põhjustatud kromosoomihaigus, mille kliiniline raskusaste sõltub deleteerunud regioonist. Näiteks 22q11 piirkonnas esinev mikrodeletsioon põhjustab DiGeorge’i sündroomi, mis on seotud südamerikete, huule-suulaelõhe ja vaimupuudega. Loote kromosoomhaiguse riski määramine on bioinformaatiline väljakutse, sest miljonite DNA järjestuste korrektne analüüs eeldab nutikaid arvutuslikke lahendusi.
Käesoleva doktoritöö eesmärk on tõsta NIPT sünnieelse sõeluuringu täpsust, terviseandmete väärindamist ja meditsiiniteenuse kulutõhusust. Doktoritöö käigus loodi uus arvutuslik raamistik NIPT-i tarbeks ning valideeriti ja analüüsiti kliinilistel andmetel varasemalt publitseeritud NIPT algoritme. Lisaks töötati välja ja valideeriti kliiniliselt uudne tarkvarapakett BinDel, mis võimaldab hinnata loote mikrodeletsioonide riski.
Töö tulemusel kvantifitseeriti arvutuslike tööriistade täpsus erineva sekveneerimiskatvuse ja loote DNA osakaalu tingimustes. Tulemused näitasid, et NIPT täpsust mõjutab nii sekveneerimissügavus kui ka loote DNA osakaalu ning algoritmi valik. Uus BinDel tarkvara parandas mikrodeletsioonide tuvastamise võimekust, pakkudes võimalusi täpsemaks ja laialdasemaks sünnieelseks sõeluuringuks. Lisaks töötati välja masinõppepõhine arvutuslik raamistik loote kromosoomi koopiaarvu muutuste tuvastamiseks.
Non-invasive prenatal genetic testing (NIPT) is a screening method for assessing the risk of fetal chromosomal disorders from a maternal blood sample. NIPT is based on sequencing and data analysis of cell-free DNA originating from the placenta. In addition to detecting changes in the fetal chromosome copy number, NIPT can also identify the risk of pathogenic microdeletions. A microdeletion syndrome results from the loss of a small segment of a chromosome, and its clinical severity depends on the deleted region. For example, a microdeletion in the 22q11 region causes DiGeorge syndrome, which is associated with heart defects, cleft palate, and intellectual disabilities. Fetal chromosomal disorder risk assessment is a bioinformatics challenge, as the accurate analysis of millions of DNA sequences requires sophisticated computational solutions. The aim of this doctoral dissertation is to improve the accuracy, data utilization, and cost-effectiveness of NIPT prenatal screening. A new computational framework for NIPT was developed, and previously published NIPT algorithms were validated and analyzed using clinical data. Additionally, a novel software tool, BinDel, was developed and clinically validated for estimating fetal microdeletion risk. The results quantified the accuracy of computational tools under varying sequencing coverage and fetal DNA fraction levels. The findings showed that NIPT accuracy is influenced by both sequencing depth and the fetal DNA fraction, as well as the choice of algorithm. The new BinDel software improved the ability to detect microdeletions, providing potential for more accurate and widespread prenatal screening. Additionally, a machine learning-based computational framework was developed for detecting fetal chromosomal copy number changes
Non-invasive prenatal genetic testing (NIPT) is a screening method for assessing the risk of fetal chromosomal disorders from a maternal blood sample. NIPT is based on sequencing and data analysis of cell-free DNA originating from the placenta. In addition to detecting changes in the fetal chromosome copy number, NIPT can also identify the risk of pathogenic microdeletions. A microdeletion syndrome results from the loss of a small segment of a chromosome, and its clinical severity depends on the deleted region. For example, a microdeletion in the 22q11 region causes DiGeorge syndrome, which is associated with heart defects, cleft palate, and intellectual disabilities. Fetal chromosomal disorder risk assessment is a bioinformatics challenge, as the accurate analysis of millions of DNA sequences requires sophisticated computational solutions. The aim of this doctoral dissertation is to improve the accuracy, data utilization, and cost-effectiveness of NIPT prenatal screening. A new computational framework for NIPT was developed, and previously published NIPT algorithms were validated and analyzed using clinical data. Additionally, a novel software tool, BinDel, was developed and clinically validated for estimating fetal microdeletion risk. The results quantified the accuracy of computational tools under varying sequencing coverage and fetal DNA fraction levels. The findings showed that NIPT accuracy is influenced by both sequencing depth and the fetal DNA fraction, as well as the choice of algorithm. The new BinDel software improved the ability to detect microdeletions, providing potential for more accurate and widespread prenatal screening. Additionally, a machine learning-based computational framework was developed for detecting fetal chromosomal copy number changes
Kirjeldus
Väitekirja elektrooniline versioon ei sisalda publikatsioone
Märksõnad
doktoritööd