Electrochemical grafting of glassy carbon, gold, highly oriented pyrolytic graphite and chemical vapour deposition-grown graphene electrodes by diazonium reduction method
Failid
Kuupäev
2014-07-05
Autorid
Ajakirja pealkiri
Ajakirja ISSN
Köite pealkiri
Kirjastaja
Abstrakt
Doktoritöö eesmärk oli erinevate elektroodide (sealhulgas klaassüsinik (GC), kuld, kõrgorienteeritud pürolüütiline grafiit (HOPG) ja keemilisel aurufaasist sadestamise meetodil valmistatud grafeen) modifitseerimine arüüldiasooniumisoolade elektrokeemilise redutseerumise meetodil, et uurida arüülrühmadega kaetud elektroodide pinna ja elektrokeemilisi omadusi. Pinna omaduste iseloomustamiseks kasutati mitmeid pinna uurimismeetodeid (röntgenfotoelektronspektroskoopia, aatomjõuspektroskoopia, kvartsmikrokaalude meetod, kõrglahutusega skaneeriv elektronmikroskoopia, Ramani spektroskoopia, ellipsomeetria) ja elektrokeemiliste omaduste tarbeks erinevaid elektrokeemilisi meetodeid (lineaarlaotusega voltamperomeetria, tsükliline voltamperomeetria, elektrokeemiline impedantsspektroskoopia, pöörleva ketaselektroodi meetod). Sõltuvalt eesmärgist, kasutati arüülrühmadega modifitseeritud elektroodide elektrokeemilise käitumise uurimisel erinevaid redokspaare nagu näiteks ABTS, Fe(CN)63-/4- ja lisaks uuriti hapniku redutseerumist leeliselises keskkonnas. Doktoritöö esimese osa tulemused näitasid, et ABTS-i redoksprotsess oli pH-st sõltumatu nii puhtal kui ka suurema pindkontsentratsiooniga 4-nitrofenüülrühmadega kaetud GC elektroodidel, kusjuures mõningast pH sõltuvust täheldati teiste, näiteks 4-karboksüfenüül ja redutseeritud nitrofenüülkiledega kaetud GC elektroodidel. Töö järgmises osas täheldati, et pärast kolme erineva asobenseeni derivaadiga modifitseerimist moodustusid GC ja Au elektroodidele vastavate arüülkilede polükihid ning elektrokeemilised mõõtmised näitasid, et kõigist uuritud arüülkiledest saavutati parim blokeerumine nii heksatsüanoferraat(III)ioonide laenguprotsessil kui ka hapniku redutseerumisel asobenseeniga modifitseeritud GC ja Au elektroodidel. Samas üleüldine elektrokeemiline käitumine arüülkiledega kaetud GC ja Au elektroodide vahel oli erinev, mis võis viidata sellele, et arüülkiled Au substraadil ei olnud nii kompaktsed kui GC pinnal. Lisaks leiti, et arüülkilede lagundamine OH● radikaalide toimel oli Au pinnal kiirem kui GC elektroodidel. Töö viimases osas näidati, et puhta HOPG ja mitmekihilise grafeeni elektrokeemiline käitumine oli pigem sarnane. Pärast erinevate süsinikmaterjalide modifitseerimist paksude 9,10-antrakinooni (AQ) kiledega leiti, et AQ kile paksus erinevatel alusmaterjalidel oli 7 kuni 60 nm. Lisaks näitasid elektrokeemilised mõõtmised, et Fe(CN)63-/4- redokspaari signaal oli AQ-modifitseeritud GC elektroodide korral täielikult maha surutud võrreldes AQ-modifitseeritud HOPG ja grafeeniga. Veel täheldati AQ-modifitseeritud HOPG ja grafeeni korral suurepärast elektrokatalüütilist efekti hapniku redutseerumisel võrreldes modifitseerimata alusmaterjalidega. Lõppkokkuvõtteks võib öelda, et doktoritöös uuritud arüülkilede pinna ja elektrokeemilised omadused sõltusid suuresti nii kasutatavast diasooniumisoolast, modifitseerimistingimustest kui ka alusmaterjalist.
The main purpose of the PhD thesis was to modify the surface of different electrode materials including glassy carbon (GC), gold, highly oriented pyrolytic graphite (HOPG) and a novel carbon material, graphene, grown by chemical vapour deposition (CVD) method via electrochemical reduction of aryldiazonium salts to further investigate the morphological and electrochemical properties of these aryl-modified electrodes. For the characterisation, various surface analytical (X-ray photoelectron spectroscopy, atomic force microscopy, electrochemical quartz crystal microbalance, high-resolution scanning electron microscopy, Raman spectroscopy, ellipsometry) and electrochemical methods (linear sweep voltammetry, cyclic voltammetry, electrochemical impedance spectroscopy, the rotating disk electrode method) were employed. The electrochemical behaviour of different redox probes including ABTS, Fe(CN)63-/4- and in addition, the oxygen reduction reaction in alkaline medium was studied. In the first part of the work, the electrochemical results revealed that the response of ABTS was independent of pH on bare and 4-nitrophenyl-modified GC electrodes with higher surface coverage, whereas some differences were observed for other, 4-carboxyphenyl and reduced nitrophenyl films, modified GC electrodes. In the next part, a comparative study between GC and Au surface electrografted with three different azobenzene diazonium salts indicated the multilayer formation on both substrates and from all these aryl films studied, the azobenzene-modified GC and Au electrodes showed the best blocking action towards the ferricyanide redox probe and oxygen reduction. In general, the electrochemical behaviour between aryl-modified GC and Au substrates was different indicating more loosely packed aryl films on Au than on GC surface. In addition, it was found that the degradation of aryl layers on GC and Au electrodes by OH● radicals generated by UV photolysis and hydrogen peroxide was faster from Au than from GC surface. The final part of the work revealed that the electrochemical behaviour between HOPG and multilayer graphene grown by CVD was rather similar. After the redox grafting of thick 9,10-anthraquinone (AQ) layers, the AQ layer thickness on different carbon substrates varied between 7 and 60 nm. In addition, the GC electrodes modified with thick AQ layers had excellent blocking properties towards the Fe(CN)63-/4- redox probe compared with AQ-grafted HOPG and graphene-based electrodes. In addition, the AQ-film increased the electrocatalytic activity of HOPG and graphene for oxygen reduction. In conclusion, the morphological and electrochemical properties of these aryl films depended greatly on the aryldiazonium salt, modification procedure and the underlying substrate used.
The main purpose of the PhD thesis was to modify the surface of different electrode materials including glassy carbon (GC), gold, highly oriented pyrolytic graphite (HOPG) and a novel carbon material, graphene, grown by chemical vapour deposition (CVD) method via electrochemical reduction of aryldiazonium salts to further investigate the morphological and electrochemical properties of these aryl-modified electrodes. For the characterisation, various surface analytical (X-ray photoelectron spectroscopy, atomic force microscopy, electrochemical quartz crystal microbalance, high-resolution scanning electron microscopy, Raman spectroscopy, ellipsometry) and electrochemical methods (linear sweep voltammetry, cyclic voltammetry, electrochemical impedance spectroscopy, the rotating disk electrode method) were employed. The electrochemical behaviour of different redox probes including ABTS, Fe(CN)63-/4- and in addition, the oxygen reduction reaction in alkaline medium was studied. In the first part of the work, the electrochemical results revealed that the response of ABTS was independent of pH on bare and 4-nitrophenyl-modified GC electrodes with higher surface coverage, whereas some differences were observed for other, 4-carboxyphenyl and reduced nitrophenyl films, modified GC electrodes. In the next part, a comparative study between GC and Au surface electrografted with three different azobenzene diazonium salts indicated the multilayer formation on both substrates and from all these aryl films studied, the azobenzene-modified GC and Au electrodes showed the best blocking action towards the ferricyanide redox probe and oxygen reduction. In general, the electrochemical behaviour between aryl-modified GC and Au substrates was different indicating more loosely packed aryl films on Au than on GC surface. In addition, it was found that the degradation of aryl layers on GC and Au electrodes by OH● radicals generated by UV photolysis and hydrogen peroxide was faster from Au than from GC surface. The final part of the work revealed that the electrochemical behaviour between HOPG and multilayer graphene grown by CVD was rather similar. After the redox grafting of thick 9,10-anthraquinone (AQ) layers, the AQ layer thickness on different carbon substrates varied between 7 and 60 nm. In addition, the GC electrodes modified with thick AQ layers had excellent blocking properties towards the Fe(CN)63-/4- redox probe compared with AQ-grafted HOPG and graphene-based electrodes. In addition, the AQ-film increased the electrocatalytic activity of HOPG and graphene for oxygen reduction. In conclusion, the morphological and electrochemical properties of these aryl films depended greatly on the aryldiazonium salt, modification procedure and the underlying substrate used.
Kirjeldus
Väitekirja elektrooniline versioon ei sisalda publikatsioone.