Uncertainty sources and analysis methods in realizing SI units of air humidity in Estonia
Kuupäev
2014-12-17
Autorid
Ajakirja pealkiri
Ajakirja ISSN
Köite pealkiri
Kirjastaja
Abstrakt
Õhuniiskus on oluline füüsikaline suurus, mis mõjutab kliimat, inimeste soojusmugavust ja materjalide omadusi. Õhuniiskuse sisaldust peab mõõtma ja kontrollima näiteks muuseumides, raamatukogudes, pooljuhtmaterjalide tootmisel ja mujal.
Õhuniiskuse mõõturite näite on vaja perioodiliselt võrrelda etaloni näitudega, et saada teada kui hea on näitude kooskõla nn „tõeliste“ väärtustega. Kuna iga mõõtmisega kaasneb mõõtemääramatus, siis pole tõelised väärtused rangelt võttes määratavad. Seetõttu kasutatakse tõeliste väärtuste hinnangutena nn tugiväärtusi, mis realiseeritakse tugietalonide abil. Käesolevas doktoritöös on edasi arendatud Eesti õhuniiskuse tugietaloni. Tugietaloni näitude mõõtemääramatust on hinnatud kolmel erineval meetodil, mille tulemused langevad hästi kokku.
Õhuniiskuse tugietaloni kohapeal kontrollimiseks on konstrueeritud lihtsustatud niiskus-generaator, mis tekitab soovitud niiskusega õhku kitsas õhuniiskuse väärtuste vahemikus.
Doktoritöös leiti, et erinevate ioonide loomulikul viisil sattumine niiskus-generaatorisse põhjustab niiskuse tekitamise vea, mida võib lugeda tühiseks. Samuti leiti nii mõõtmise teel kui ka arvutuslikult, et mõõdukas ülerõhk niiskusgeneratorist väljuvas torus, milles voolab väga kuiv õhk, praktiliselt peatab niiskuse sattumise torusse läbi selle seinas olevate väikeste avade. Niiskuse sattumine torusse läbi pisut vabastatud toruliitmike leiti olevat võimalik ka siis, kui torus oli mõõdukas ülerõhk.
Käesoleva doktoritöö tulemused on arvesse võetud Eesti õhuniiskuse tugietaloni usaldusväärsuse tõstmisel ja võimaldavad tulevikus etaloni edasi arendada.
Air humidity is a physical quantity that affects climate, human thermal comfort and properties of materials. Air humidity should be measured and controlled in museums, libraries, for manufacturing semiconductor materials, etc. It is necessary to periodically compare the readings of air humidity measuring devices to the readings of standard (etalon) in order to get to know how well the readings agree with the so-called “true” values of air humidity. No physical measurement is entirely accurate. Each measurement is accompanied by some uncertainty. Therefore true values are experimentally inaccessible and reference values of measurement standards are used instead. This dissertation is dedicated to developing Estonian air humidity reference measurement standard further. The measurement uncertainty of the reference values of the reference standard has been assessed using three different methods. The results agree well to each other. In order to check the readings of the reference standard on site, a simplified humidity generator has been constructed. It generates air with wished humidity in a narrow range of air humidity values. It was found that the natural presence of different ions in the humidity generator causes humidity generation error that can be considered insignificant. It was also found experimentally and theoretically that moderate overpressure in the tubing of a humidity generator practically stops escaping of humid air into the tubing through small holes inside the wall of the tubing even if very dry air is flowing in it. However, the escaping of humid air into the tubing through slightly loosened connectors is possible if there is moderate overpressure in the tubing. The results of the current dissertation have been taken into account for enhancing the reliability of Estonian air humidity reference standard and enable to develop the standard further in future.
Air humidity is a physical quantity that affects climate, human thermal comfort and properties of materials. Air humidity should be measured and controlled in museums, libraries, for manufacturing semiconductor materials, etc. It is necessary to periodically compare the readings of air humidity measuring devices to the readings of standard (etalon) in order to get to know how well the readings agree with the so-called “true” values of air humidity. No physical measurement is entirely accurate. Each measurement is accompanied by some uncertainty. Therefore true values are experimentally inaccessible and reference values of measurement standards are used instead. This dissertation is dedicated to developing Estonian air humidity reference measurement standard further. The measurement uncertainty of the reference values of the reference standard has been assessed using three different methods. The results agree well to each other. In order to check the readings of the reference standard on site, a simplified humidity generator has been constructed. It generates air with wished humidity in a narrow range of air humidity values. It was found that the natural presence of different ions in the humidity generator causes humidity generation error that can be considered insignificant. It was also found experimentally and theoretically that moderate overpressure in the tubing of a humidity generator practically stops escaping of humid air into the tubing through small holes inside the wall of the tubing even if very dry air is flowing in it. However, the escaping of humid air into the tubing through slightly loosened connectors is possible if there is moderate overpressure in the tubing. The results of the current dissertation have been taken into account for enhancing the reliability of Estonian air humidity reference standard and enable to develop the standard further in future.
Kirjeldus
Väitekirja elektrooniline versioon ei sisalda publikatsioone.
Märksõnad
metroloogia, hügromeetria, õhuniiskus, SI-süsteem, etalonid, mõõtemääramatus, standardimine, Eesti, metrology, hygrometry, air humidity, SI, measurement standards, uncertainty in measurement, standardization, Estonia