New perspectives for the amorphization and physical stabilization of poorly water-soluble drugs and understanding their dissolution behavior
Failid
Kuupäev
2015-10-19
Autorid
Ajakirja pealkiri
Ajakirja ISSN
Köite pealkiri
Kirjastaja
Abstrakt
Paljud vees halvastilahustuvad raviained (RA) võivad esineda erinevates polümorfsetes või solvaatsetes kristallvormides ja isegi amorfses olekus. Vastav tahke aine vorm või RA faasimuutused ühest vormist teise võivad oluliselt muuta RA füsikokeemilisi, farmatseutilisi või biofarmatseutilisi omadusi nagu lahustuvus, lahustumiskiirus ja biosaadavus. RA kõige ebastabiilsem vorm on amorfne vorm, millel on tavaliselt parim näiline lahustuvus ja biosaadavus võrreldes RA kristallvormidega. Antud töö eesmärgiks oli uurida vees halvastilahustuva mudelraviaine, piroksikaami (PRX) amorfse vormi saamist ja selle stabiliseerimist kasutades elektrospinnimise (ES) meetodit, uurida saadud tahkeid dispersioone (SD), iseloomustada nende füsikokeemilisi omadusi ja lahustumiskäitumist. Selleks kasutati erinevaid instrumentaalseid meetodeid nagu skaneeriv elektronmikroskoopia (SEM), röntgendifraktomeetria (XRPD), Raman spektroskoopia, diferentsiaalne skaneeriv kalorimeetria (DSC) ja valge valguse skaneeriv interferomeetria (SWLI). Hüdroksüpropüülmetüültselluloos (HPMC) ja uus, pook-kopolümeer Soluplus® olid ES-l uuritud polümeerseteks kandjateks. Töö tulemusena leiti, et ES-l saadud SD tüüpi nanofiibrites on PRX amorfses vormis. Nende nanofiibrite füüsikaline stabiilsus ja lahustumiskiirus olid otseses sõltuvuses kasutatud polümeerist ja lahustisüsteemist, PRX algsest kristallvormist ning säilitamistingimustest. Mõlemad uuritud polümeerid stabiliseerisid PRX amorfses vormis. Kasutatud analüüsimeetoditega oli võimalik tõestada PRX amorfse vormi olemasolu nanofiibrites ja jälgida tema tahke aine faasimuutusi säilitamisel. SWLI oli uudne ja sobiv meetod nanofiibrite kolmedimensionaalse pinnastruktuuri uurimiseks võimaldades mõõta proovi kahjustamata kiiresti ja mittekontaktselt. ES nanofiibrites oleva PRX lahustuvus ja lahustumiskiirus olid otseselt seotud kasutatud polümeeri füsikokeemiliste omadustega.
Many poorly water-soluble active pharmaceutical ingredients (APIs) can exist in different polymorphic or solvated crystal forms and also in the amorphous state. The least stable form of API is an amorphous form, but this state has usually an enhanced solubility, dissolution and bioavailability compared to the crystalline state. The main objectives of this thesis were to investigate the amorphization and physical stabilization of poorly water-soluble model API, piroxicam (PRX), to investigate electrospinning (ES) as a novel technique in fabricating the high-energy amorphous solid dispersions (SDs) of a poorly water-soluble API, to characterize the physicochemical properties of nanofibrous SDs, and to investigate their dissolution behavior. The properties of API and drug-loaded nanofibers were investigated by scanning electron microscopy (SEM), X-ray powder diffraction (XRPD), Raman spectroscopy, differential scanning calorimetry (DSC) and scanning white light interferometry (SWLI). Hydroxypropyl methylcellulose (HPMC) and a new synthetic graft copolymer Soluplus® were investigated as hydrophilic carrier polymers for ES. ES was found to be applicable for the amorphization of PRX and for fabricating the SD type nanofibrous matrices. The physical stability and dissolution of SDs were dependent on the carrier polymer, initial crystalline form of PRX, solvent system and storage conditions applied. Both carrier polymers stabilized the amorphous state of PRX. SWLI was found to be the method of choice for the rapid non-contacting and non-destructive three dimensional surface topographic analysis of nanofibrous mats. The solubility and dissolution rate of amorphous PRX loaded in ES nanofibers were greatly dependent on the physicochemical properties of a carrier polymer.
Many poorly water-soluble active pharmaceutical ingredients (APIs) can exist in different polymorphic or solvated crystal forms and also in the amorphous state. The least stable form of API is an amorphous form, but this state has usually an enhanced solubility, dissolution and bioavailability compared to the crystalline state. The main objectives of this thesis were to investigate the amorphization and physical stabilization of poorly water-soluble model API, piroxicam (PRX), to investigate electrospinning (ES) as a novel technique in fabricating the high-energy amorphous solid dispersions (SDs) of a poorly water-soluble API, to characterize the physicochemical properties of nanofibrous SDs, and to investigate their dissolution behavior. The properties of API and drug-loaded nanofibers were investigated by scanning electron microscopy (SEM), X-ray powder diffraction (XRPD), Raman spectroscopy, differential scanning calorimetry (DSC) and scanning white light interferometry (SWLI). Hydroxypropyl methylcellulose (HPMC) and a new synthetic graft copolymer Soluplus® were investigated as hydrophilic carrier polymers for ES. ES was found to be applicable for the amorphization of PRX and for fabricating the SD type nanofibrous matrices. The physical stability and dissolution of SDs were dependent on the carrier polymer, initial crystalline form of PRX, solvent system and storage conditions applied. Both carrier polymers stabilized the amorphous state of PRX. SWLI was found to be the method of choice for the rapid non-contacting and non-destructive three dimensional surface topographic analysis of nanofibrous mats. The solubility and dissolution rate of amorphous PRX loaded in ES nanofibers were greatly dependent on the physicochemical properties of a carrier polymer.
Kirjeldus
Väitekirja elektrooniline versioon ei sisalda publikatsioone.
Märksõnad
ravimvormid, stabiilsus, amorfsus, lahustuvus, piroksikaam, pharmaceutical forms, stability, amorphousness, solubility, piroxicam