DSpace
    • English
    • Deutsch
    • Eesti
  • English 
    • English
    • Deutsch
    • Eesti
  • Login
View Item 
  •   DSpace @University of Tartu
  • Loodus- ja täppisteaduste valdkond
  • Arvutiteaduse instituut
  • MTAT magistritööd – Master's theses
  • View Item
  •   DSpace @University of Tartu
  • Loodus- ja täppisteaduste valdkond
  • Arvutiteaduse instituut
  • MTAT magistritööd – Master's theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Masinõpe k-ritta mängude õppimiseks

Thumbnail
View/Open
thesis.pdf (1.369Mb)
extra.zip (3.868Mb)
Date
2012
Author
Loos, Aleksei
Metadata
Show full item record
Abstract
Antud töö põhieesmärgiks oli uurida kui efektiivne ja mõistlik on kombineerida mitu erinevat masinõppe meetodit, et treenida tehisintellekti k-ritta tüüpi mängudele. Need meetodid on järgnevad: geneetiline algoritm, juhumetsad (koos otsustuspuudega) ning Minimax algoritm. Eriliseks teeb sellise meetodi asjaolu, et kogu intelligents treenitakse ilma inimese ekspert teadmisteta ning kõik vajaliku informatsiooni peab arvuti ise endale omandama.
 
The main objective of the thesis is to explore the viability of combination multiple machine learning techniques in order to train Artificial Intelligence for k-in-a-row type games. The techniques under observation are following: - Random Forest - Minimax Algorithm - Genetic Algorithm The main engine for training AI is Genetic Algorithm where a set of individuals are evolved towards better playing computer intelligence. In the evaluation step, series of games are done where individuals compete in series of games against each other – the results are recorded and the evaluation score of the individuals are based on their performance in the games. During a game, heuristic game tree search algorithm Minimax is used as player move advisor. Each of the competing individuals has a Random Forest attached that is used as the heuristic function in Minimax. The key idea of the training is to evolve as good Random Forests as possible. This is achieved without any help of human expertise by using solely evolutionary training.
 
URI
http://hdl.handle.net/10062/32992
Collections
  • MTAT magistritööd – Master's theses [633]

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV