Show simple item record

dc.contributor.advisorKäärik, Meelis, juhendaja
dc.contributor.advisorTee, Liivika, juhendaja
dc.contributor.authorPérez Tiscareño, Reyna María
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Matemaatika ja statistika instituutet
dc.date.accessioned2017-07-05T08:21:06Z
dc.date.available2017-07-05T08:21:06Z
dc.date.issued2017
dc.identifier.urihttp://hdl.handle.net/10062/57103
dc.description.abstractLoss reserving is a fundamental concept of actuarial mathematics. A traditionally used method is the chain ladder method. While it is a simple and robust method and works well in many cases, it also has its limitations. The chain ladder method is applied to aggregated data triangle, in a way similar to constructing histograms. Thus, a natural way to improve the approach is to use kernel density estimation instead. This leads to an extension called the continuous chain ladder (CCL) method. In CCL, the main choices a researcher has to make is the choice of the kernel function and the choice of bandwidth, which introduces a suitable level of smoothing. The first choice is usually made for practical or theoretical reasons and it usually has a minor impact on the performance of the estimator. However, the choice of bandwidth can significantly affect the performance of the kernel estimator. There are several possible methods suggested in the literature to choose the bandwidth. To find the optimal bandwidth, the cross-validation procedure is used. A common method for find the optimal bandwidth is the cross-validation. As it is a very time-consuming procedure, some rules of thumb that allow to skip the cross-validation step, can significantly increase the performance of CCL. In this thesis, the main goal is to find the patterns how different input scenarios affect the optimal bandwidths of the CCL model.en
dc.language.isoenget
dc.publisherTartu Ülikoolet
dc.subjectchain ladder methoden
dc.subjectclaim reservingen
dc.subjectcontinuous chain ladderen
dc.subjectkernel smoothingen
dc.subjectahel-redel meetodet
dc.subjectkahjureservide hindamineet
dc.subjectpidev ahel-redelet
dc.subjecttuumaga silumineet
dc.titleLoss reserving with kernel functionsen
dc.typeThesisen


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record