The impact of climate change on fine roots and root-associated microbial communities in birch and spruce forests
Kuupäev
2020-05-12
Autorid
Ajakirja pealkiri
Ajakirja ISSN
Köite pealkiri
Kirjastaja
Abstrakt
Kliima soojenedes ja õhuniiskuse tõustes sõltub Põhja-Euroopa metsade seisund ja süsinikusidumine peenjuurte ja nendega seotud mikroobikoosluste kohanemisvõimest. Antud töös uuriti suurendatud õhuniiskuse ja mullasoojenemise mõju arukase (Betula pendula) ja kuuse (Picea abies ja P. sitchensis) peen- ja imijuurte biomassile, imijuurte morfoloogiale ning ektomükoriissete seente ja risosfääribakterite kooslustele. Manipulatsioonikatsete tulemusi võrreldi mõõtmistega geotermaalsel mullatemperatuurigradiendil ja vaatlustega geograafilisel laiuskraadigradiendil. Kõigil kolmel uuritud puuliigil ilmnes stressitingimustes samasuunaline morfoloogiline reaktsioon, mis väljendus pikemate, vähemharunenud imijuurte moodustamises ning omastava pinna suurendamises juuremassiühiku kohta. Põhjapoolse paiknemise ja õhuniiskuse tõusuga kaasnes suurem peen- ja imijuurte biomass; eksperimentaalne mullasoojendamine ja lõunapoolne paiknemine põhjustasid juurte biomassi ja juurte kudede tiheduse vähenemist, mis viitab kiiremale juurte elutsüklile soojemates muldades. Laiuskraadiuuringutes leiti olulisi kolmepoolseid vastastikmõjusid juurte morfoloogia, neid koloniseeriva seenekoosluse ning mulla ja risosfääri bakterikoosluse vahel. Õhuniiskuse kasvades suurenes seenekoosluses oluliselt hüdrofiilse mütseeliga liikide osakaal. Soojemates muldades esines rohkem suure hüüfimassiga kauglevi-mütseelitüüpi moodustavaid seeni. Nii õhuniiskuse tõustes kui mulla soojenedes suurenes seeneperekond Tomentella osakaal, mis on tõenäoliselt seotud kiirema juurte elutsükliga. Laiuskraadigradiendil määras suure osa imijuuretunnuste ja juurtega seotud mikroobikoosluste struktuuri varieeruvusest mulla süsiniku ja lämmastiku suhe. Käesolevast tööst ilmneb, et kased ja kuused reageerivad keskkonnamuutustele aktiivselt juurte morfoloogiat ja biomassi modifitseerides, millega kaasnevad samaaegsed nihked juurtega seotud mikroobikooslustes, ning nimetatud muutused on omavahel tugevalt seotud. Uuringute tulemused lubavad oletada, et vähemalt uuritud liikide puhul on tegemist üldiste kohanemismustritega niiskema ja soojema kliima suhtes.
In the face of rising temperatures and humidity, the functioning and carbon storage of northern European forests is largely dependent on the acclimation ability of fine roots and root-associated microbial communities. We investigated the effects of increased air humidity and soil warming on silver birch (Betula pendula) and spruce (Picea abies and P. sitchensis) fine and absorptive root biomass (FRB, aFRB), absorptive root morphology and the communities of ectomycorrhizal (EcM) fungi and rhizosphere bacteria, comparing results from field manipulation experiments to observations from a small-scale geothermal soil temperature gradient and large-scale latitudinal gradients. We witnessed a uniform morphological response of forming longer and less branched absorptive roots with increased specific root length and area in all studied species to obstructions in nutrient uptake or otherwise stressful growing conditions. Air humidification and a northern location resulted in higher FRB and aFRB, while experimental warming and a southern location caused a decrease in FRB and aFRB and root tissue density, which suggests increased root turnover in warmer soils. Strong trilateral relationships between absorptive root morphology, EcM fungal community and soil bacterial community emerged in the studied birch stands. Humidification caused a shift towards a higher proportion of hydrophilic morphotypes; a higher proportion of long-distance exploration type was recorded in warmer soils. Warming and humidification led to a rise in the proportion of Tomentella spp., possibly related to higher root turnover. On the latitudinal gradient, the soil C:N ratio was the main determinant of variation in absorptive root traits and root-associated microbial community structure. This thesis demonstrates how birches and spruces respond to environmental change through active modifications in root morphology and biomass, concurring with shifts in root-associated microbial community, and all these changes proved to be strongly inter-related. The similar root reactions, irrespective of tree species, stand age, location, or experiment type, permit us to conclude that the observed responses reflect general acclimation patterns, at least for the studied species.
In the face of rising temperatures and humidity, the functioning and carbon storage of northern European forests is largely dependent on the acclimation ability of fine roots and root-associated microbial communities. We investigated the effects of increased air humidity and soil warming on silver birch (Betula pendula) and spruce (Picea abies and P. sitchensis) fine and absorptive root biomass (FRB, aFRB), absorptive root morphology and the communities of ectomycorrhizal (EcM) fungi and rhizosphere bacteria, comparing results from field manipulation experiments to observations from a small-scale geothermal soil temperature gradient and large-scale latitudinal gradients. We witnessed a uniform morphological response of forming longer and less branched absorptive roots with increased specific root length and area in all studied species to obstructions in nutrient uptake or otherwise stressful growing conditions. Air humidification and a northern location resulted in higher FRB and aFRB, while experimental warming and a southern location caused a decrease in FRB and aFRB and root tissue density, which suggests increased root turnover in warmer soils. Strong trilateral relationships between absorptive root morphology, EcM fungal community and soil bacterial community emerged in the studied birch stands. Humidification caused a shift towards a higher proportion of hydrophilic morphotypes; a higher proportion of long-distance exploration type was recorded in warmer soils. Warming and humidification led to a rise in the proportion of Tomentella spp., possibly related to higher root turnover. On the latitudinal gradient, the soil C:N ratio was the main determinant of variation in absorptive root traits and root-associated microbial community structure. This thesis demonstrates how birches and spruces respond to environmental change through active modifications in root morphology and biomass, concurring with shifts in root-associated microbial community, and all these changes proved to be strongly inter-related. The similar root reactions, irrespective of tree species, stand age, location, or experiment type, permit us to conclude that the observed responses reflect general acclimation patterns, at least for the studied species.
Kirjeldus
Väitekirja elektrooniline versioon ei sisalda publikatsioone
Märksõnad
microbiology, climatic changes