Transition metal and nitrogen doped nanocarbon cathode catalysts for anion exchange membrane fuel cells
Kuupäev
2022-07-14
Autorid
Ajakirja pealkiri
Ajakirja ISSN
Köite pealkiri
Kirjastaja
Abstrakt
Vesiniku kasutamine energiakandjana võiks olla lahendus meie kasvavatele energiajulgeoleku, keskkonnareostuse ja kliimamuutuse probleemidele. Vesinikkütusel töötavaid prootonvahetusmembraaniga kütuseelemente kasutatakse juba transpordisektoris, kuid nende laialdast turustamist piirab vajadus väärismetallkatalüsaatorite järele. Anioonvahetusmembraaniga kütuseelementide tehnoloogia on praegu veel arendamisjärgus, kuid see annaks võimaluse kasutada tunduvalt odavamaid mitte-väärismetallkatalüsaatoreid. Siirdemetallide ja lämmastikuga dopeeritud süsinikmaterjalid on aktiivsed elektrokatalüsaatorid hapniku redutseerumisreaktsiooni jaoks leeliselises keskkonnas ja seega saab neid kasutada anioonvahetusmembraaniga kütuseelementides katoodmaterjalina.
Doktoritöö eesmärk oli valmistada mitte-väärismetallkatalüsaatoreid hapniku elektrokeemilise redutseerumisreaktsiooni jaoks, uurida nende elektrokatalüütilisi omadusi ning rakendusvõimalusi anioonvahetusmembraaniga kütuseelemendis. Katalüsaatorite valmistamiseks kasutati erineva morfoloogiaga nanostruktuurseid süsinikmaterjale: süsiniknanotorusid, karbiidse päritoluga süsinikku, grafeeni ja kommertsiaalset ning ise valmistatud mesopoorset süsinikku. Need süsinikmaterjalid dopeeriti lämmastiku ja siirdemetallidega (raud, koobalt, mangaan) kõrgtemperatuurse pürolüüsi käigus. Uuriti nii erinevate lisandite kui ka süsinikkandja struktuuri mõju katalüsaatorite hapniku redutseerimise aktiivsusele. Materjalide kasutamisel katoodkatalüsaatoritena anioonvahetusmembraaniga kütuseelemendis saadi võrreldavad tulemused plaatinakatalüsaatoriga, näidates seega, et mitte-väärismetallkatalüsaatorid võivad tõepoolest asendada väärismetalle kütuseelementides.
Hydrogen is a clean energy carrier that could be the solution to our growing concerns about energy security, environmental pollution and climate change. The proton exchange membrane fuel cells fueled by hydrogen are already used in the transport sector, but their further commercialization is limited by the need for precious metal catalysts. The technology of anion exchange membrane fuel cells (AEMFCs) is currently less developed, however, it gives the opportunity to use much cheaper non-precious metal catalysts. Transition metal-nitrogen-carbon based materials have already shown great promise as electrocatalysts for the oxygen reduction reaction in alkaline medium and thus can be used as cathode materials of AEMFCs. The aim of the research described in this doctoral thesis was to prepare and study non-precious metal catalysts for the electrochemical oxygen reduction reaction (ORR) and test their applicability in the AEMFC. To prepare the catalysts, nanostructured carbon support materials with varying morphology were used, such as carbon nanotubes, carbide-derived carbon, graphene and commercially available or self-made mesoporous carbon. These carbon materials were doped with nitrogen and transition metals (iron, cobalt, manganese) via simple high-temperature pyrolysis. The effect of different dopants as well as the structure of the support materials on the ORR activity of the catalysts was studied. These materials were used as cathode catalysts in the AEMFC, where they performed very well, with some of them rivalling the commercially used platinum-based catalyst, thus showing that non-precious metal catalysts could indeed replace precious metals in the fuel cells.
Hydrogen is a clean energy carrier that could be the solution to our growing concerns about energy security, environmental pollution and climate change. The proton exchange membrane fuel cells fueled by hydrogen are already used in the transport sector, but their further commercialization is limited by the need for precious metal catalysts. The technology of anion exchange membrane fuel cells (AEMFCs) is currently less developed, however, it gives the opportunity to use much cheaper non-precious metal catalysts. Transition metal-nitrogen-carbon based materials have already shown great promise as electrocatalysts for the oxygen reduction reaction in alkaline medium and thus can be used as cathode materials of AEMFCs. The aim of the research described in this doctoral thesis was to prepare and study non-precious metal catalysts for the electrochemical oxygen reduction reaction (ORR) and test their applicability in the AEMFC. To prepare the catalysts, nanostructured carbon support materials with varying morphology were used, such as carbon nanotubes, carbide-derived carbon, graphene and commercially available or self-made mesoporous carbon. These carbon materials were doped with nitrogen and transition metals (iron, cobalt, manganese) via simple high-temperature pyrolysis. The effect of different dopants as well as the structure of the support materials on the ORR activity of the catalysts was studied. These materials were used as cathode catalysts in the AEMFC, where they performed very well, with some of them rivalling the commercially used platinum-based catalyst, thus showing that non-precious metal catalysts could indeed replace precious metals in the fuel cells.
Kirjeldus
Väitekirja elektrooniline versioon ei sisalda publikatsioone
Märksõnad
fuel cells, nanostructured materials, carbon materials, carbon nanotubes, transition metals, catalysts, electrocatalysis, electrochemical reduction