Structural time series models in GDP analysis

dc.contributor.advisorRaus, Toomas, juhendaja
dc.contributor.authorKippar, Kätlin
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Matemaatika ja statistika instituutet
dc.date.accessioned2025-06-25T13:53:16Z
dc.date.available2025-06-25T13:53:16Z
dc.date.issued2025
dc.description.abstractThe aim of this thesis is to use structural time series models to estimate the business cycles of Estonia and its five key trading partners, with additional objectives of examining potential economic dependencies between the estimated cycles and evaluating the forecast accuracy of structural models. To address these research questions, structural models with both trigonometric and ARMA cycle formulations were applied to GDP time series data, alongside an alternative cycle estimation method of the Hodrick-Prescott (HP) filter. The resulting cycle estimates were further used to test Granger causality. Additionally, ARIMA models were estimated for comparative purposes in forecasting evaluation. The thesis includes a brief overview of gross domestic product (GDP) and business cycles, a comprehensive overview of the applied methods, a summary of relevant previous research, and the results of the analysis. As a result of this thesis, business cycles were successfully estimated for all the countries considered in the analysis, economic dependencies between Estonia and its trading partners were identifies, and the forecast accuracy of the models was assessed.en
dc.identifier.urihttps://hdl.handle.net/10062/111680
dc.language.isoen
dc.publisherTartu Ülikoolet
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Estoniaen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/ee/
dc.subjectstructural time series modelsen
dc.subjectgross domestic product (GDP)en
dc.subjectbusiness cycle estimationen
dc.subjectHodrick-Prescott filteren
dc.subjectGranger causalityen
dc.subjectforecastingen
dc.subjectstruktuursed aegridade mudelidet
dc.subjectsisemajanduse koguprodukt (SKP)et
dc.subjectmajandustsüklite hindamineet
dc.subjectHodrick-Prescott filteret
dc.subjectGrangeri põhjuslikkuset
dc.subjectprognoosimineet
dc.subject.othermagistritöödet
dc.subject.othervõrguväljaandedet
dc.titleStructural time series models in GDP analysisen
dc.typeThesis

Failid

Originaal pakett

Nüüd näidatakse 1 - 5 9
Laen...
Pisipilt
Nimi:
kätlin_kippar_msc_2025.pdf
Suurus:
16.98 MB
Formaat:
Adobe Portable Document Format
Laen...
Pisipilt
Nimi:
Additive Case - Structural Time Series Models in GDP Analysis.Rmd
Suurus:
29.59 KB
Formaat:
Unknown data format
Laen...
Pisipilt
Nimi:
CLVMNACSCAB1GQDE.csv
Suurus:
2.69 KB
Formaat:
Laen...
Pisipilt
Nimi:
CLVMNACSCAB1GQEE.csv
Suurus:
2.14 KB
Formaat:
Laen...
Pisipilt
Nimi:
CLVMNACSCAB1GQFI.csv
Suurus:
2.63 KB
Formaat: