Stomatal CO₂ regulation pathway and its application for modulating tomato plants
Laen...
Kuupäev
Autorid
Ajakirja pealkiri
Ajakirja ISSN
Köite pealkiri
Kirjastaja
Tartu Ülikooli Kirjastus
Abstrakt
Taimed on aluseks elule Maal, kuid muutuva keskkonna põhjustatud stress toob kaasa mitmeid väljakutseid taimekasvatuses. Kõrgem temperatuur ja madalam õhuniiskus suurendavad taimede veekulu ning ohustavad saagikust, mistõttu on tarvis aretada väiksema veetarbe ja suurema põuataluvusega taimi. Õhulõhed võimaldavad taimedel fotosünteesiks süsihappegaasi omastada, kuid kaotavad selle käigus vett. Õhulõhe koosneb kahest sulgrakust ja nende vahele jäävast õhupilust, mille suurust muudetakse vastavalt keskkonnatingimustele, õhulõhed avanevad valguses, madala CO₂ tingimustes ja kõrge õhuniiskuse korral ning sulguvad pimeduses, kõrge CO₂ tingimustes ja madala õhuniiskuse toimel. Käesolevas doktoritöös uuriti sulgrakkude CO₂ signaalirada ja selle toimimist hariliku müürlooga (Arabidopsis thaliana) taimedes erinevatel CO₂ kontsentratsioonivahemikel ning tavapärase ja madala õhuniiskuse tingimustes. Tuvastati mitogeen-aktiveeritud proteiinkinaaside MPK12 ja MPK4 oluline roll õhulõhede CO₂ regulatsioonis. Õhulõhede vastuste kineetika sõltus CO₂ vahemikust: madalas kuni tavalises kontsentratsioonis olid reaktsioonid aeglasemad ja suurema amplituudiga, samas kui tavalise kuni kõrge CO₂ vahemikus oli sulgumine kiirem ja väiksema amplituudiga. Varasemaid teadmisi õhulõhede CO₂ signaalirajast rakendati tomatis (Solanum lycopersicum), kus täppisaretuse meetoditega inaktiveeriti HT1 homoloogid tomatis. Saadud slht1 slht2 topeltmutandi õhulõhed olid CO₂ muutustele tundetud, kuid reageerisid endiselt madalale õhuniiskusele ja abstsiishappele (ABA). Mutantidel oli madalam õhulõhede juhtivus, väiksem veekulu ja suurem põuataluvus, säilitades metsiktüübiga võrreldava kasvu ja viljade omadused. See töö kirjeldab õhulõhede CO₂ regulatsiooni toimimist eri CO₂ vahemikes ja selle sõltuvust õhuniiskusest. Lisaks toetavad tulemused HT1 modifikatsioonide kasutamist taimede veekulu vähendamiseks.
Plants are the foundation for life on Earth, but stress caused by changing environmental conditions poses major challenges for crop production. Higher temperatures and lower air humidity increase plant water use and lower yields, making it necessary to breed crops with reduced water usage and improved drought resilience. Stomata enable plants to take up carbon dioxide for photosynthesis, but water is lost in the process. A stoma consists of two guard cells and the pore between them, the aperture of this pore is adjusted according to environmental conditions: stomata open in the light, under low CO₂ and high air humidity, and close in darkness, under high CO₂ and in response to low air humidity. In this doctoral thesis, guard-cell CO₂ signalling and its function in Arabidopsis thaliana were studied across different CO₂ concentration ranges and under normal and low air humidity. A key role for the mitogen-activated protein kinases MPK12 and MPK4 in stomatal CO₂ regulation was identified. The kinetics of stomatal responses depended on the CO₂ range, at low to ambient concentrations, responses were slower and of greater amplitude, whereas at ambient to high CO₂, closure was faster and smaller in amplitude. Previous knowledge of stomatal CO₂ signalling was applied in tomato (Solanum lycopersicum), where HT1 homologues were inactivated using genetic editing. Stomata of the resulting slht1 slht2 double mutant line were insensitive to changes in CO₂, but still responded to low air humidity and abscisic acid (ABA). The mutants had lower stomatal conductance, reduced water use, and improved drought resilience, while maintaining biomass accumulation and fruit traits comparable to wild type. This work describes how stomatal CO₂ regulation functions across distinct CO₂ ranges and how it is affected by air humidity. The results also support the use of HT1 as a target for reducing plant water use.
Plants are the foundation for life on Earth, but stress caused by changing environmental conditions poses major challenges for crop production. Higher temperatures and lower air humidity increase plant water use and lower yields, making it necessary to breed crops with reduced water usage and improved drought resilience. Stomata enable plants to take up carbon dioxide for photosynthesis, but water is lost in the process. A stoma consists of two guard cells and the pore between them, the aperture of this pore is adjusted according to environmental conditions: stomata open in the light, under low CO₂ and high air humidity, and close in darkness, under high CO₂ and in response to low air humidity. In this doctoral thesis, guard-cell CO₂ signalling and its function in Arabidopsis thaliana were studied across different CO₂ concentration ranges and under normal and low air humidity. A key role for the mitogen-activated protein kinases MPK12 and MPK4 in stomatal CO₂ regulation was identified. The kinetics of stomatal responses depended on the CO₂ range, at low to ambient concentrations, responses were slower and of greater amplitude, whereas at ambient to high CO₂, closure was faster and smaller in amplitude. Previous knowledge of stomatal CO₂ signalling was applied in tomato (Solanum lycopersicum), where HT1 homologues were inactivated using genetic editing. Stomata of the resulting slht1 slht2 double mutant line were insensitive to changes in CO₂, but still responded to low air humidity and abscisic acid (ABA). The mutants had lower stomatal conductance, reduced water use, and improved drought resilience, while maintaining biomass accumulation and fruit traits comparable to wild type. This work describes how stomatal CO₂ regulation functions across distinct CO₂ ranges and how it is affected by air humidity. The results also support the use of HT1 as a target for reducing plant water use.
Kirjeldus
Doktoritöö elektrooniline versioon ei sisalda publikatsioone
Märksõnad
doktoritööd