Substrate specificity of the multisite specific pseudouridine synthase RluD
Date
2013-06-27
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Iga raku elutegevuse üks olulisemaid protsesse on valgusüntees, mille käigus mRNA nukleotiidse järjestuse järgi sünteesitakse vastavalt geneetilisele koodile valgud. Valgusünteesi eest vastutab valkudest ja RNA-st (rRNA) koosnev kompleks, ribosoom, mis koosneb kahest ebavõrdse suurusega osast (suurest ja väiksest subühikust). Väiksem subühik vastutab geneetilise koodi järgimise ja suurem valkude valmimise eest.
Ribosoom koosneb RNA-st (rRNA) ja valkudest (r-valk). rRNA on ribosoomi funktsioneerimise jaoks kõige olulisem komponent. Lisaks konserveerunud struktuurile sisaldab rRNA ka mitmeid mittestandardseid nukleotiide, mille paiknemine on olnud teada juba mõnda aega, kuid nende rolli kohta ribosoomides on endiselt väga vähe andmeid.
Pseudouridiinid on enim levinud RNA modifikatsioonid ja nende tekkimise eest vastutavad valgud – pseudouridiini süntaasid. RluD on pseuouridiini süntaas, mis koosneb kahest osast: S4-sarnasest ja katalüütilisest osast. RluD põhjustab RNA-s pseudouridiinide tekkimise kolme kohta, millest kõik on väga kõrgelt konserveerunud ja asuvad suure subühiku rRNA heeliksis 69 (H69). Vaatamata tähtsusele, ei ole senini teada, kuidas tunneb RluD ära just need uridiinid, mida ta muudab.
Käesolevas töös kasutasime geneetilisi meetodeid, et tekitada mutatsioone rRNA ja RluD geenide kindlatesse kohtadesse, tuvastamaks kuidas need mutatsioonid muudavad RluD poolt sünteesitavate pseudouridiinide tekkimist. Uurimise käigus leidsime, et RluD on spetsiifiline vaid positsioonide 1911, 1915 ja 1917 suhtes kui rRNA on ribosoomide koosseisus, kuid kaotab olulisel määral oma spetsiifilisusest, kui rRNA ei ole r-valkudega seotud. RluD aktiivsuse jaoks on oluline kontakteerumine nukleotiidiga positsioonis 1916, mis on ainuke leitud spetsiifilisuse määraja rRNA-s. Saadud andmed annavad ka alust väita, et RluD seondumine rRNA-ga on kaheetapiline. S4-sarnane osa määrab ära selle piirkonna, kus asuvad modifitseeritavad nukleotiidid, ja katalüütiline osa määrab lõplikult spetsiifilisuse. Kõik RluD poolt tekitatavad pseudouridiinid tehakse rRNA-sse üheaegselt ja ilma kindla järjekorrata. Antud töös saadud tulemused aitavad paremini mõista protsesse, mis on vajalikud funtsionaalsete ribosoomide tekkimiseks rakkudes.
One of the most important processes in every cell lifecycle is protein synthesis performed by ribosomes. Ribosomes are composed of two unequal subunits (large and small subunit). Small subunit is responsible for following the genetic code and large subunit is responsible for synthesis of proteins. Ribosome consists of ribosomal RNA (rRNA) and r-proteins. Structure of rRNA is very conserved and it carries the catalytic role in protein synthesis. rRNA contains many modified nucleotides which are also highly conserved. Although modified nucleotides are known for a long time, there is little information about their function in rRNA. The most common modifications in rRNA are pseudouridines which are synthesized by proteins called pseudouridine synthases. E.coli RluD is pseudouridine synthase that synthesizes three highly conserved pseudouridines located in a very important structural element of the ribosome, helix 69 (H69). Little is known about how RluD recognizes its substrate nucleotides, or why these modifications are needed. We used genetic manipulations to introduce site specific point mutations into rRNA and RluD genes in order to determine the effect of the mutations on the occurrence of RluD directed pseudouridines. Our results show that RluD is specific to positions 1911, 1915, and 1917 in fully assembled ribosomes. However, RluD exhibits loosened specificity on protein free rRNA. Our results suggest that RluD exhibits a two-step binding to its substrate. The S4-like domain of RluD is responsible for initial binding that guides the catalytic domain to the substrate. We found that the catalytic domain of the RluD probably contacts nucleotide at position 1916 of the 23S rRNA to achieve its specificity. We also found that all RluD directed pseudouridines occur concurrently and independent of each other to the rRNA. Our results help to better understand the mechanism of ribosomal biogenesis in cells.
One of the most important processes in every cell lifecycle is protein synthesis performed by ribosomes. Ribosomes are composed of two unequal subunits (large and small subunit). Small subunit is responsible for following the genetic code and large subunit is responsible for synthesis of proteins. Ribosome consists of ribosomal RNA (rRNA) and r-proteins. Structure of rRNA is very conserved and it carries the catalytic role in protein synthesis. rRNA contains many modified nucleotides which are also highly conserved. Although modified nucleotides are known for a long time, there is little information about their function in rRNA. The most common modifications in rRNA are pseudouridines which are synthesized by proteins called pseudouridine synthases. E.coli RluD is pseudouridine synthase that synthesizes three highly conserved pseudouridines located in a very important structural element of the ribosome, helix 69 (H69). Little is known about how RluD recognizes its substrate nucleotides, or why these modifications are needed. We used genetic manipulations to introduce site specific point mutations into rRNA and RluD genes in order to determine the effect of the mutations on the occurrence of RluD directed pseudouridines. Our results show that RluD is specific to positions 1911, 1915, and 1917 in fully assembled ribosomes. However, RluD exhibits loosened specificity on protein free rRNA. Our results suggest that RluD exhibits a two-step binding to its substrate. The S4-like domain of RluD is responsible for initial binding that guides the catalytic domain to the substrate. We found that the catalytic domain of the RluD probably contacts nucleotide at position 1916 of the 23S rRNA to achieve its specificity. We also found that all RluD directed pseudouridines occur concurrently and independent of each other to the rRNA. Our results help to better understand the mechanism of ribosomal biogenesis in cells.
Description
Väitekirja elektrooniline versioon ei sisalda publikatsioone.
Keywords
uridiin, substraat, süntaasid, ribosoomid, rRNA, uridin, substrate, synthases, ribosomy, rRNA