On unequal data demand private information retrieval codes
| dc.contributor.advisor | Hollmann, Henk D.L., juhendaja | |
| dc.contributor.advisor | Riet, Ago-Erik, juhendaja | |
| dc.contributor.author | Puškin, Martin | |
| dc.contributor.other | Tartu Ülikool. Matemaatika ja statistika instituut | et |
| dc.contributor.other | Tartu Ülikool. Loodus- ja täppisteaduste valdkond | et |
| dc.date.accessioned | 2022-07-14T12:00:51Z | |
| dc.date.available | 2022-07-14T12:00:51Z | |
| dc.date.issued | 2022 | |
| dc.description.abstract | A t-PIR code allows the recovery of an encoded data symbol from each of t disjoint collections of code word symbols. We consider a generalization where some data symbols are in higher demand than other data symbols. We refer to such codes as (t1, . . . , tk)-UDD PIR codes, where now the i-th data symbol can be recovered from each of ti disjoint collections of code word symbols, for i = 1, . . . , k. We generalize the Griesmer bound for the length of the shortest possible t-PIR code to the (t1, . . . , tk)-UDD PIR code case and provide two separate proofs for the bound. We show that the Griesmer bound is tight for k ≤ 3 but not in general for k = 4. We also generalize other known upper and lower bounds for the shortest possible t-PIR codes to the (t1, . . . , tk)-UDD PIR code case. | en |
| dc.identifier.uri | http://hdl.handle.net/10062/83237 | |
| dc.language.iso | eng | et |
| dc.publisher | Tartu Ülikool | et |
| dc.rights | openAccess | et |
| dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
| dc.subject | Bachelor’s thesis | en |
| dc.subject | PIR codes | en |
| dc.subject | UDD PIR codes | en |
| dc.subject | Griesmer bound | en |
| dc.title | On unequal data demand private information retrieval codes | en |
| dc.type | Thesis | en |