On unequal data demand private information retrieval codes

dc.contributor.advisorHollmann, Henk D.L., juhendaja
dc.contributor.advisorRiet, Ago-Erik, juhendaja
dc.contributor.authorPuškin, Martin
dc.contributor.otherTartu Ülikool. Matemaatika ja statistika instituutet
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.date.accessioned2022-07-14T12:00:51Z
dc.date.available2022-07-14T12:00:51Z
dc.date.issued2022
dc.description.abstractA t-PIR code allows the recovery of an encoded data symbol from each of t disjoint collections of code word symbols. We consider a generalization where some data symbols are in higher demand than other data symbols. We refer to such codes as (t1, . . . , tk)-UDD PIR codes, where now the i-th data symbol can be recovered from each of ti disjoint collections of code word symbols, for i = 1, . . . , k. We generalize the Griesmer bound for the length of the shortest possible t-PIR code to the (t1, . . . , tk)-UDD PIR code case and provide two separate proofs for the bound. We show that the Griesmer bound is tight for k ≤ 3 but not in general for k = 4. We also generalize other known upper and lower bounds for the shortest possible t-PIR codes to the (t1, . . . , tk)-UDD PIR code case.en
dc.identifier.urihttp://hdl.handle.net/10062/83237
dc.language.isoenget
dc.publisherTartu Ülikoolet
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectBachelor’s thesisen
dc.subjectPIR codesen
dc.subjectUDD PIR codesen
dc.subjectGriesmer bounden
dc.titleOn unequal data demand private information retrieval codesen
dc.typeThesisen

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
martin_pushkin_bsc_2022.pdf
Suurus:
555.93 KB
Formaat:
Adobe Portable Document Format
Kirjeldus:

Litsentsi pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
license.txt
Suurus:
1.67 KB
Formaat:
Item-specific license agreed upon to submission
Kirjeldus: