Two-asset option pricing

dc.contributor.advisorRaus, Toomas, juhendaja
dc.contributor.authorNnamdi, Lilian Amarachukwu
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Matemaatika ja statistika instituutet
dc.date.accessioned2023-09-08T12:51:42Z
dc.date.available2023-09-08T12:51:42Z
dc.date.issued2023
dc.description.abstractThis thesis delves into the pricing of four distinct two-asset options: basket options, correlation options, spread options and options on the minimum and maximum of two assets. Through numerical analysis, three pricing models are employed: A lattice model with five branches which involves an extension of the lattice binomial method by Cox, Ross, and Rubinstein to value options with only one asset, A Modification of the Binomial method and the Adaptive Binomial Lattice Method for time interval [T −Δt, T] with refinement level 1. These models are used to price both European and American two-asset options. The accuracy of the methods are shown by valuing the two-asset options and comparing with the exact prices or prices gotten from relevant papers. In the numerical experiments, all models perform quite well, but the adaptive binomial lattice method has better accuracy than other methods.en
dc.identifier.urihttps://hdl.handle.net/10062/92057
dc.language.isoenget
dc.publisherTartu Ülikoolet
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectBlack-Scholes modelen
dc.subjectBlack-Scholesi mudelet
dc.subjectadaptive binomial lattice modelen
dc.subjectkohanduv ruudustikuline binomiaalne mudelet
dc.subjectbinomial modelen
dc.subjectbinomiaalne mudelet
dc.subjecttwo-asset optionsen
dc.subjectkahe vara optsioonidet
dc.subject.othermagistritöödet
dc.subject.othervõrguväljaandedet
dc.titleTwo-asset option pricingen
dc.typeinfo:eu-repo/semantics/masterThesiset

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
lilian_nnamdi_msc_2023.pdf
Size:
660.62 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: