Improving Microscopy Image Segmentation with Object Detection

dc.contributor.advisorPapkov, Mikhail, juhendaja
dc.contributor.authorUrukov, Dmytro
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2023-09-22T07:00:38Z
dc.date.available2023-09-22T07:00:38Z
dc.date.issued2021
dc.description.abstractAutomated analysis of microscopy images is an essential part of modern biological research. Recent advances in deep learning have greatly improved its quality and helped decrease the amount of time-consuming manual work during the experiments. Biologists are interested not only in the accurate detection of various objects (whole cells, cell organelles, tissue structures, etc.) but also in the high-quality segmentation of their shape. In this work, we address the problem of obtaining realistic instance segmentation masks from images with high object density. We show that combining segmentation and detection methods into a single image analysis pipeline helps efficiently separate overlapping objects and improves the segmentation quality. To reduce the complexity of this pipeline, we propose a novel CenterUNet multi-task neural network architecture that simultaneously performs object detection and semantic segmentation. We evaluate the performance of this architecture across several microscopy image domains and conduct a thorough ablation study to identify the necessary and sufficient combination of detection subtasks to solve the segmentation problem. We believe that the results of our research provide valuable insights and can help individual practitioners as well as the image analysis industry. Our developed model may improve microscopy image segmentation pipelines at virtually zero computational cost and little integration efforts.et
dc.identifier.urihttps://hdl.handle.net/10062/92352
dc.language.isoenget
dc.publisherTartu Ülikoolet
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectdeep learninget
dc.subjectcomputer visionet
dc.subjectconvolutional neural networkset
dc.subjectobject detectionet
dc.subjectinstance segmentationet
dc.subjectmulti-task learninget
dc.subjectdigital microscopyet
dc.subject.othermagistritöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticset
dc.subject.otherinfotechnologyet
dc.titleImproving Microscopy Image Segmentation with Object Detectionet
dc.typeThesiset

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
Urukov_ComputerScience_2021.pdf
Suurus:
18.32 MB
Formaat:
Adobe Portable Document Format
Kirjeldus:

Litsentsi pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
license.txt
Suurus:
1.71 KB
Formaat:
Item-specific license agreed upon to submission
Kirjeldus: