Uncovering the TRMT112 methyltransferase network and characterising the cellular functions of TRMT112-network member N6AMT1
Laen...
Kuupäev
Autorid
Ajakirja pealkiri
Ajakirja ISSN
Köite pealkiri
Kirjastaja
Tartu Ülikooli Kirjastus
Abstrakt
Käesoleva doktoritöö eesmärk oli uurida evolutsiooniliselt konserveerunud metüültransferaasi ko-faktorit TRMT112 ja sellega interakteeruvaid metüültransferaase, keskendudes eelkõige TRMT112 interaktsioonipartnerile N6AMT1.
Metüültransferaasid on valgud, mis katalüseerivad metüülrühma ülekannet erinevatele molekulaarsetele substraatidele, näiteks RNA-le, DNA-le ja teistele valkudele, ning reguleerivad seeläbi nende rakulisi funktsioone. Muutusi metüültransferaaside korrektsel funktsioneerimisel on seostatud erinevate haigustega siinhulgas neurodegeneratiivsete häirete ja vähiga. Seetõttu on oluline mõista metüültransferaaside täpseid funktsioone ja nende omavahelisi koostoime võrgustike inimrakkudes. Eukarüootsetes rakkudes on metüültransferaasi kofaktor TRMT112 ja TRMT112-ga seonduvad metüültransferaasid olulised valgusünteesi regulaatorid. Teadmised TRMT112-võrgustiku metüültransferaasidest ja nende funktsioonidest inimrakkudes on aga endiselt puudulikud.
Käesoleva töö tulemused näitasid, et inimese rakkudes interakteerub TRMT112 vähemalt seitsme erineva metüültransferaasiga: N6AMT1, WBSCR22, METTL5, ALKBH8, TRMT11, THUMPD2 ja THUMPD3. Seejuures selgus, et metüültransferaaside ja TRMT112 omavaheline interaktsioon on lisaks vajalik ka nende vastastikuseks stabilisatsiooniks. Samuti näidati, et TRMT112-võrgustiku metüültransferaas N6AMT1 osaleb rakkude proliferatsiooni regulatsioonil, kuna selle vaigistamine põhjustas aeglasemat rakkude jagunemist ja muutusi korrektses rakutsükli progressioonis, eelkõige aeglasemas mitoosist väljumisel ja G1/S faasi üleminekul. Siinhulgas leiti, et N6AMT1 vaigistamine põhjustab ühe G1/S faasi üleminekuks olulise faktori tsükliin E allaregulatsiooni nii valgu kui ka mRNA tasemel. Viimaks näidati, et mitmed N6AMT1-vastased antikehad annavad ristreaktsiooni mitoosiks olulise valgu Aurora kinaas A-ga, mis võib olla põhjustatud mõlemale valgule unikaalse ENNPEE motiivi tõttu. Kokkuvõtvalt laiendasid selle doktoritöö tulemused meie arusaama TRMT112 metüültransferaaside võrgustikust ja üldisemalt metüültransferaasidega seotud rakkulistest protsessidest.
The aim of this doctoral thesis was to investigate the evolutionarily conserved methyltransferase-activator TRMT112 and its interacting methyltransferases with a particular focus on the interaction partner N6AMT1. Methyltransferases are a specific group of proteins that add a methyl group to different substrates such as RNA, DNA, and other proteins, and by doing so alter the behaviour of the substrate inside the cells. Studies have shown that dysfunction of various methyltransferases can lead to numerous diseases, ranging from neurodegenerative disorders to cancer. Therefore, it is necessary to fully understand the complex functions and interaction networks of these proteins in human cells. In eukaryotic cells, the methyltransferase cofactor TRMT112 and methyltransferases that bind to TRMT112 are important regulators of protein synthesis. Nonetheless, knowledge about TRMT112-network methyltransferases and their functions in human cells is still limited. The results of this thesis revealed that TRMT112 interacts with at least seven methyltransferases: N6AMT1, WBSCR22, METTL5, ALKBH8, TRMT11, THUMPD2 and THUMPD3 in human cells. In addition TRMT112 and its interacting methyltransferases showed a mutual stabilisation effect on each other in human cells. It was also shown that the TRMT112-network methyltransferase N6AMT1 is involved in the regulation of cell proliferation, as its depletion led to an increase in cell doubling time and impaired cell cycle progression, in particular progression out of mitosis and G1/S transition. Additionally, N6AMT1 depleted cells showed a decreased level of cyclin E, an essential regulator of the G1/S transition, at both protein and mRNA levels. Lastly, it was shown that several commercially available antibodies targeting N6AMT1 cross-react with the mitosis-associated protein Aurora kinase A, likely due to the presence of a shared, unique ENNPEE motif found only in these two proteins. Altogether, the findings of this thesis expand our understanding of the TRMT112 methyltransferase network and contribute to a better understanding of methyltransferase-associated cellular processes in human cells.
The aim of this doctoral thesis was to investigate the evolutionarily conserved methyltransferase-activator TRMT112 and its interacting methyltransferases with a particular focus on the interaction partner N6AMT1. Methyltransferases are a specific group of proteins that add a methyl group to different substrates such as RNA, DNA, and other proteins, and by doing so alter the behaviour of the substrate inside the cells. Studies have shown that dysfunction of various methyltransferases can lead to numerous diseases, ranging from neurodegenerative disorders to cancer. Therefore, it is necessary to fully understand the complex functions and interaction networks of these proteins in human cells. In eukaryotic cells, the methyltransferase cofactor TRMT112 and methyltransferases that bind to TRMT112 are important regulators of protein synthesis. Nonetheless, knowledge about TRMT112-network methyltransferases and their functions in human cells is still limited. The results of this thesis revealed that TRMT112 interacts with at least seven methyltransferases: N6AMT1, WBSCR22, METTL5, ALKBH8, TRMT11, THUMPD2 and THUMPD3 in human cells. In addition TRMT112 and its interacting methyltransferases showed a mutual stabilisation effect on each other in human cells. It was also shown that the TRMT112-network methyltransferase N6AMT1 is involved in the regulation of cell proliferation, as its depletion led to an increase in cell doubling time and impaired cell cycle progression, in particular progression out of mitosis and G1/S transition. Additionally, N6AMT1 depleted cells showed a decreased level of cyclin E, an essential regulator of the G1/S transition, at both protein and mRNA levels. Lastly, it was shown that several commercially available antibodies targeting N6AMT1 cross-react with the mitosis-associated protein Aurora kinase A, likely due to the presence of a shared, unique ENNPEE motif found only in these two proteins. Altogether, the findings of this thesis expand our understanding of the TRMT112 methyltransferase network and contribute to a better understanding of methyltransferase-associated cellular processes in human cells.
Kirjeldus
Väitekirja elektrooniline versioon ei sisalda publikatsioone
Märksõnad
doktoritööd